Documentation Verification Report

Classification

📁 Source: Mathlib/FieldTheory/IsAlgClosed/Classification.lean

Statistics

MetricCount
DefinitionsequivOfTranscendenceBasis
1
Theoremscardinal_eq_cardinal_transcendence_basis_of_aleph0_lt, cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt', cardinal_le_max_transcendence_basis, cardinal_le_max_transcendence_basis', isAlgClosure_of_transcendence_basis, ringEquiv_of_equiv_of_charZero, ringEquiv_of_equiv_of_char_eq
7
Total8

IsAlgClosed

Definitions

NameCategoryTheorems
equivOfTranscendenceBasis 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt 📖mathematicalIsTranscendenceBasis
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.aleph0
Cardinal.liftle_of_not_gt
not_le_of_gt
cardinal_le_max_transcendence_basis
max_le
le_of_lt
le_rfl
le_antisymm
max_eq_left
le_max_of_le_right
max_eq_right
le_trans
Cardinal.lift_mk_le
AlgebraicIndependent.injective
Cardinal.lift_injective
Cardinal.lift_lift
cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt' 📖IsTranscendenceBasis
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.aleph0
Cardinal.lift_id
cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt
cardinal_le_max_transcendence_basis 📖mathematicalIsTranscendenceBasis
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Cardinal
Cardinal.instLE
Cardinal.lift
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Cardinal.aleph0
Cardinal.lift_max
Cardinal.lift_aleph0
Algebra.IsAlgebraic.cardinalMk_le_max
Subalgebra.isDomain
instIsDomain
Subalgebra.instIsTorsionFree'
IsAlgClosure.isAlgebraic
isAlgClosure_of_transcendence_basis
Cardinal.lift_mk_eq
Cardinal.lift_umax
Cardinal.lift_le
max_le_max
MvPolynomial.cardinalMk_le_max_lift
le_rfl
sup_of_le_left
Cardinal.lift_lift
cardinal_le_max_transcendence_basis' 📖mathematicalIsTranscendenceBasis
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Cardinal
Cardinal.instLE
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Cardinal.aleph0
Cardinal.lift_id
cardinal_le_max_transcendence_basis
isAlgClosure_of_transcendence_basis 📖mathematicalIsTranscendenceBasis
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsAlgClosure
Subalgebra
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set.range
Subalgebra.toCommRing
Subalgebra.toAlgebra
Semifield.toCommSemiring
Algebra.id
Subalgebra.instIsTorsionFree'
instIsDomain
Subalgebra.instIsTorsionFree'
instIsDomain
IsTranscendenceBasis.isAlgebraic
RingHom.domain_nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
ringEquiv_of_equiv_of_charZero 📖mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.aleph0
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
exists_isTranscendenceBasis
instFaithfulSMulIntOfCharZero
Cardinal.aleph0_lt_lift
Cardinal.lift_mk_eq'
Cardinal.lift_injective
cardinal_eq_cardinal_transcendence_basis_of_aleph0_lt
Int.instNontrivial
le_of_eq
Cardinal.mk_int
ringEquiv_of_equiv_of_char_eq 📖mathematicalCardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Cardinal.aleph0
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
CharP.char_is_prime_or_zero
IsDomain.to_noZeroDivisors
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
ringEquiv_of_equiv_of_charZero
CharP.charP_to_charZero

---

← Back to Index