Documentation Verification Report

IsSepClosed

πŸ“ Source: Mathlib/FieldTheory/IsSepClosed.lean

Statistics

MetricCount
DefinitionsIsSepClosed, IsSepClosure, equiv
3
Theoremseq_bot_of_isSepClosed_of_isSeparable, algebraMap_surjective, degree_eq_one_of_irreducible, exists_aeval_eq_zero, exists_eq_mul_self, exists_evalβ‚‚_eq_zero, exists_evalβ‚‚_eq_zero_of_injective, exists_pow_nat_eq, exists_root, exists_root_C_mul_X_pow_add_C_mul_X_add_C, exists_root_C_mul_X_pow_add_C_mul_X_add_C', factors_of_separable, isAlgClosed_of_perfectField, lift_def, of_exists_root, of_isAlgClosed, roots_eq_zero_iff, splits_codomain, splits_domain, splits_of_separable, surjective_restrictDomain_of_isSeparable, isAlgClosure_of_perfectField, isAlgClosure_of_perfectField_top, isGalois, isSeparable, of_isAlgClosure_of_perfectField, self_of_isSepClosed, sep_closed, separable, isSepClosure_iff
30
Total33

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
eq_bot_of_isSepClosed_of_isSeparable πŸ“–mathematicalβ€”Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”IsScalarTower.left
bot_unique
IsSepClosed.algebraMap_surjective
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass

IsSepClosed

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_surjective πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
β€”minpoly.monic
Algebra.IsSeparable.isIntegral
Algebra.IsSeparable.isSeparable
degree_eq_one_of_irreducible
minpoly.irreducible
instIsDomain
minpoly.aeval
add_eq_zero_iff_eq_neg
Polynomial.aeval_C
Polynomial.aeval_X
Polynomial.aeval_add
one_mul
Polynomial.C_1
Polynomial.eq_X_add_C_of_degree_eq_one
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
degree_eq_one_of_irreducible πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.Separable
Semifield.toCommSemiring
Polynomial.degree
WithBot
WithBot.one
Nat.instOne
β€”Polynomial.Splits.degree_eq_one_of_irreducible
splits_of_separable
exists_aeval_eq_zero πŸ“–mathematicalPolynomial.SeparableDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”exists_evalβ‚‚_eq_zero_of_injective
FaithfulSMul.algebraMap_injective
exists_eq_mul_self πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Nat.instAtLeastTwoHAddOfNat
exists_pow_nat_eq
sq
exists_evalβ‚‚_eq_zero πŸ“–mathematicalPolynomial.Separable
CommRing.toCommSemiring
Polynomial.evalβ‚‚
CommSemiring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”exists_evalβ‚‚_eq_zero_of_injective
RingHom.injective
IsLocalRing.toNontrivial
Field.instIsLocalRing
exists_evalβ‚‚_eq_zero_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
Polynomial.Separable
Polynomial.evalβ‚‚
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”exists_root
Polynomial.degree_map_eq_of_injective
Polynomial.Separable.map
Polynomial.evalβ‚‚_eq_eval_map
Polynomial.IsRoot.eq_1
exists_pow_nat_eq πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Nat.cast_zero
Polynomial.degree_X_pow_sub_C
IsLocalRing.toNontrivial
Field.instIsLocalRing
LT.lt.ne'
WithBot.coe_lt_coe
pow_eq_zero_iff
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
exists_root
Polynomial.separable_X_pow_sub_C
Polynomial.eval_sub
Polynomial.eval_pow
Polynomial.eval_X
Polynomial.eval_C
exists_root πŸ“–mathematicalPolynomial.Separable
Semifield.toCommSemiring
Field.toSemifield
Polynomial.IsRoot
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”Polynomial.Splits.exists_eval_eq_zero
splits_of_separable
exists_root_C_mul_X_pow_add_C_mul_X_add_C πŸ“–mathematicalAddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Polynomial.degree_ne_of_natDegree_ne
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
zero_add
Mathlib.Tactic.ComputeDegree.natDegree_eq_of_le_of_coeff_ne_zero'
Polynomial.natDegree_add_le_of_le
Polynomial.natDegree_mul_le_of_le
Mathlib.Tactic.ComputeDegree.natDegree_C_le
Polynomial.natDegree_X_le
Mathlib.Tactic.ComputeDegree.coeff_add_of_eq
Mathlib.Tactic.ComputeDegree.coeff_mul_add_of_le_natDegree_of_eq_ite
Mathlib.Tactic.ComputeDegree.coeff_congr_lhs
Polynomial.coeff_C
Polynomial.coeff_X
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
le_refl
mul_one
add_zero
Nat.cast_zero
one_ne_zero
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Int.instCharZero
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Nat.cast_one
le_trans
one_le_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Polynomial.natDegree_pow_le_of_le
Mathlib.Tactic.ComputeDegree.coeff_pow_of_natDegree_le_of_eq_ite'
one_pow
sup_of_le_left
Nat.instCanonicallyOrderedAdd
Mathlib.Meta.NormNum.isNat_le_true
Nat.instIsStrictOrderedRing
LT.lt.ne'
lt_of_lt_of_le
zero_lt_two
Polynomial.separable_C_mul_X_pow_add_C_mul_X_add_C
Ne.isUnit
exists_root
Polynomial.eval_add
Polynomial.eval_mul
Polynomial.eval_C
Polynomial.eval_pow
Polynomial.eval_X
exists_root_C_mul_X_pow_add_C_mul_X_add_C' πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”exists_root_C_mul_X_pow_add_C_mul_X_add_C
CharP.cast_eq_zero_iff
factors_of_separable πŸ“–mathematicalPolynomial.Separable
Semifield.toCommSemiring
Field.toSemifield
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”splits_of_separable
isAlgClosed_of_perfectField πŸ“–mathematicalβ€”IsAlgClosedβ€”IsAlgClosed.of_exists_root
exists_root
LT.lt.ne'
Polynomial.degree_pos_of_irreducible
PerfectField.separable_of_irreducible
lift_def πŸ“–mathematicalβ€”lift
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”β€”
of_exists_root πŸ“–mathematicalPolynomial.eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsSepClosedβ€”Polynomial.monic_mul_leadingCoeff_inv
Irreducible.ne_zero
Polynomial.irreducible_mul_leadingCoeff_inv
Polynomial.Separable.mul_unit
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.instIsLocalHomRingHomC
Polynomial.eval_mul
Polynomial.eval_C
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.uniqueFactorizationMonoid
PrincipalIdealRing.to_uniqueFactorizationMonoid
EuclideanDomain.to_principal_ideal_domain
UniqueFactorizationMonoid.factors_prod
Polynomial.Splits.mul
Polynomial.Splits.multisetProd
UniqueFactorizationMonoid.irreducible_of_factor
Polynomial.Separable.of_dvd
UniqueFactorizationMonoid.dvd_of_mem_factors
Polynomial.Splits.of_degree_eq_one
Polynomial.degree_eq_one_of_irreducible_of_root
IsUnit.splits
Units.isUnit
of_isAlgClosed πŸ“–mathematicalβ€”IsSepClosedβ€”IsAlgClosed.splits
roots_eq_zero_iff πŸ“–mathematicalPolynomial.Separable
Semifield.toCommSemiring
Field.toSemifield
Polynomial.roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Multiset
Multiset.instZero
DFunLike.coe
RingHom
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Polynomial.coeff
β€”instIsDomain
le_or_gt
Polynomial.eq_C_of_degree_le_zero
exists_root
LT.lt.ne'
Polynomial.mem_roots
Polynomial.ne_zero_of_degree_gt
Polynomial.roots_C
splits_codomain πŸ“–mathematicalPolynomial.Separable
Semifield.toCommSemiring
Field.toSemifield
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.map
β€”splits_of_separable
Polynomial.Separable.map
splits_domain πŸ“–mathematicalPolynomial.Separable
Semifield.toCommSemiring
Field.toSemifield
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.map
β€”Polynomial.Splits.map
splits_of_separable
splits_of_separable πŸ“–mathematicalPolynomial.Separable
Semifield.toCommSemiring
Field.toSemifield
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”β€”
surjective_restrictDomain_of_isSeparable πŸ“–mathematicalβ€”AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommSemiring.toSemiring
AlgHom.restrictDomain
β€”IntermediateField.exists_algHom_of_splits'
Algebra.IsSeparable.isIntegral
splits_codomain
Algebra.IsSeparable.isSeparable

IsSepClosure

Definitions

NameCategoryTheorems
equiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isAlgClosure_of_perfectField πŸ“–mathematicalβ€”IsAlgClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
CommSemiring.toSemiring
CommRing.toCommSemiring
instIsDomain
Field.toSemifield
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
GroupWithZero.toNoZeroSMulDivisors
DivisionSemiring.toGroupWithZero
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
separable
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
isAlgClosure_of_perfectField_top
Algebra.IsAlgebraic.perfectField
isAlgClosure_of_perfectField_top πŸ“–mathematicalβ€”IsAlgClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
CommSemiring.toSemiring
CommRing.toCommSemiring
instIsDomain
Field.toSemifield
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
GroupWithZero.toNoZeroSMulDivisors
DivisionSemiring.toGroupWithZero
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
IsSepClosed.isAlgClosed_of_perfectField
sep_closed
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
separable
isGalois πŸ“–mathematicalβ€”IsGaloisβ€”separable
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
isSeparable
IsSepClosed.splits_codomain
sep_closed
Algebra.IsSeparable.isSeparable
isSeparable πŸ“–mathematicalβ€”Algebra.IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”separable
of_isAlgClosure_of_perfectField πŸ“–mathematicalβ€”IsSepClosureβ€”instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
IsSepClosed.of_isAlgClosed
IsAlgClosure.isAlgClosed
Algebra.IsAlgebraic.isSeparable_of_perfectField
IsAlgClosure.isAlgebraic
self_of_isSepClosed πŸ“–mathematicalβ€”IsSepClosure
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
β€”Algebra.isSeparable_self
sep_closed πŸ“–mathematicalβ€”IsSepClosedβ€”β€”
separable πŸ“–mathematicalβ€”Algebra.IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”β€”

(root)

Definitions

NameCategoryTheorems
IsSepClosed πŸ“–CompData
8 mathmath: SeparableClosure.isSepClosed, isSepClosure_iff, IsSepClosed.of_isAlgClosed, Algebra.IsAlgebraic.isSepClosed, IsSepClosed.of_exists_root, isSepClosed_iff_isPurelyInseparable_algebraicClosure, IsSepClosed.separableClosure_eq_bot_iff, IsSepClosure.sep_closed
IsSepClosure πŸ“–CompData
4 mathmath: isSepClosure_iff, IsSepClosure.of_isAlgClosure_of_perfectField, separableClosure.isSepClosure, IsSepClosure.self_of_isSepClosed

Theorems

NameKindAssumesProvesValidatesDepends On
isSepClosure_iff πŸ“–mathematicalβ€”IsSepClosure
IsSepClosed
Algebra.IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”IsSepClosure.sep_closed
IsSepClosure.separable

---

← Back to Index