Documentation Verification Report

Isaacs

πŸ“ Source: Mathlib/FieldTheory/Isaacs.lean

Statistics

MetricCount
Definitions0
Theoremsnonempty_algEquiv_of_aeval_eq_zero_eq, nonempty_algEquiv_of_range_minpoly_eq, nonempty_algHom_of_aeval_eq_zero_subset, nonempty_algHom_of_exist_roots, nonempty_algHom_of_exists_root, nonempty_algHom_of_minpoly_eq, nonempty_algHom_of_range_minpoly_subset, of_exist_roots, of_exists_root
9
Total9

Field

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_algEquiv_of_aeval_eq_zero_eq πŸ“–mathematicalsetOf
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
DFunLike.coe
AlgHom
CommSemiring.toSemiring
Semifield.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
AlgEquivβ€”nonempty_algHom_of_aeval_eq_zero_subset
Eq.le
Eq.ge
Algebra.IsAlgebraic.algHom_bijectiveβ‚‚
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
nonempty_algEquiv_of_range_minpoly_eq πŸ“–mathematicalSet.range
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
toEuclideanDomain
minpoly
DivisionRing.toRing
toDivisionRing
AlgEquiv
Semifield.toCommSemiring
toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”nonempty_algHom_of_range_minpoly_subset
Eq.le
IsIntegral.isAlgebraic
IsLocalRing.toNontrivial
instIsLocalRing
Eq.ge
minpoly.ne_zero
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
minpoly.eq_zero
Algebra.IsAlgebraic.algHom_bijectiveβ‚‚
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
nonempty_algHom_of_aeval_eq_zero_subset πŸ“–β€”Set
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
Set.instHasSubset
setOf
DFunLike.coe
AlgHom
CommSemiring.toSemiring
Semifield.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
β€”β€”nonempty_algHom_of_minpoly_eq
minpoly.aeval
minpoly.eq_iff_aeval_minpoly_eq_zero
instIsDomain
IsLocalRing.toNontrivial
instIsLocalRing
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
nonempty_algHom_of_exist_roots πŸ“–β€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
toSemifield
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”nonempty_algHom_of_exists_root
nonempty_algHom_of_exists_root πŸ“–β€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
toSemifield
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”IntermediateField.Lifts.nonempty_algHom_of_exist_lifts_finset
Polynomial.Splits.of_dvd
instIsDomain
Polynomial.SplittingField.splits
Polynomial.map_ne_zero
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
instIsLocalRing
Finset.prod_ne_zero_iff
Polynomial.nontrivial
Polynomial.instNoZeroDivisors
IsDomain.to_noZeroDivisors
minpoly.ne_zero
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
IsScalarTower.algebraMap_eq
Polynomial.map_map
Polynomial.map_dvd_map'
Finset.dvd_prod_of_mem
IsScalarTower.left
IntermediateField.finiteDimensional_adjoin
Finite.of_fintype
Set.eq_univ_of_forall
Set.mem_iUnion
IntermediateField.adjoin_simple_le_iff
IntermediateField.exists_algHom_adjoin_of_splits
DFunLike.congr_fun
AlgHom.comp_apply
AlgEquiv.coe_algHom
IntermediateField.adjoinRootEquivAdjoin_symm_apply_gen
AdjoinRoot.liftAlgHom_root
finite_or_infinite
exists_primitive_element_of_finite_bot
Set.mem_univ
Subspace.exists_eq_top_of_iUnion_eq_univ
Finite.algHom
Module.Free.of_divisionRing
IntermediateField.isScalarTower
IsScalarTower.right
IntermediateField.subset_adjoin
nonempty_algHom_of_minpoly_eq πŸ“–mathematicalminpoly
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
AlgHom
Semifield.toCommSemiring
toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”nonempty_algHom_of_exists_root
minpoly.aeval
nonempty_algHom_of_range_minpoly_subset πŸ“–mathematicalSet
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
toEuclideanDomain
Set.instHasSubset
Set.range
minpoly
DivisionRing.toRing
toDivisionRing
AlgHom
Semifield.toCommSemiring
toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”nonempty_algHom_of_minpoly_eq

IsAlgClosure

Theorems

NameKindAssumesProvesValidatesDepends On
of_exist_roots πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsAlgClosure
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
CommRing.toCommSemiring
instIsDomain
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Algebra.toModule
GroupWithZero.toNoZeroSMulDivisors
DivisionSemiring.toGroupWithZero
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”of_exists_root
of_exists_root πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsAlgClosure
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
CommRing.toCommSemiring
instIsDomain
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Algebra.toModule
GroupWithZero.toNoZeroSMulDivisors
DivisionSemiring.toGroupWithZero
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”of_splits
instIsDomain
Algebra.IsAlgebraic.isIntegral
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Field.nonempty_algHom_of_exists_root
Normal.toIsAlgebraic
Polynomial.SplittingField.instNormal
Algebra.IsIntegral.isIntegral
minpoly.monic
minpoly.irreducible
Polynomial.Splits.of_algHom
Polynomial.SplittingField.splits

---

← Back to Index