Documentation Verification Report

JacobsonNoether

๐Ÿ“ Source: Mathlib/FieldTheory/JacobsonNoether.lean

Statistics

MetricCount
Definitions0
Theoremsexist_pow_eq_zero_of_le, exists_pow_mem_center_of_inseparable, exists_pow_mem_center_of_inseparable', exists_separable_and_not_isCentral, exists_separable_and_not_isCentral'
5
Total5

JacobsonNoether

Theorems

NameKindAssumesProvesValidatesDepends On
exist_pow_eq_zero_of_le ๐Ÿ“–mathematicalSubring
DivisionRing.toRing
SetLike.instMembership
Subring.instSetLike
Subring.center
Nat.iterate
DFunLike.coe
Module.End
CommSemiring.toSemiring
CommRing.toCommSemiring
Subring.instCommRingSubtypeMemCenter
AddCommGroup.toAddCommMonoid
LieRing.toAddCommGroup
LieRing.ofAssociativeRing
LieAlgebra.toModule
LieAlgebra.ofAssociativeAlgebra
Algebra.instSubtypeMemSubringCenter
LinearMap.instFunLike
RingHom.id
Semiring.toNonAssocSemiring
LieHom
Module.End.instRing
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
LieHom.instFunLike
LieAlgebra.ad
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
โ€”smulCommClass_self
IsScalarTower.left
exists_pow_mem_center_of_inseparable'
Algebra.to_smulCommClass
IsScalarTower.right
LieAlgebra.ad_eq_lmul_left_sub_lmul_right
Module.End.pow_apply
Pi.sub_apply
sub_pow_expChar_pow_of_commute
instExpCharLinearMapSubtypeMemSubringCenterId
LinearMap.commute_mulLeft_right
LinearMap.sub_apply
LinearMap.pow_mulLeft
LinearMap.mulLeft_apply
LinearMap.pow_mulRight
LinearMap.mulRight_apply
Pi.zero_apply
Subring.mem_center_iff
sub_eq_zero_of_eq
Function.iterate_add
Pi.comp_zero
iterate_map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Function.const_zero
exists_pow_mem_center_of_inseparable ๐Ÿ“–mathematicalSubring
DivisionRing.toRing
SetLike.instMembership
Subring.instSetLike
Subring.center
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Nat.instMonoid
โ€”isPurelyInseparable_iff_pow_mem
DivisionRing.isDomain
ExpChar.expChar_center_iff
Algebra.IsAlgebraic.isIntegral
RingHom.mem_range
Subalgebra.range_subset
Set.mem_of_subset_of_mem
Set.mem_range
exists_pow_mem_center_of_inseparable' ๐Ÿ“–mathematicalSubring
DivisionRing.toRing
SetLike.instMembership
Subring.instSetLike
Subring.center
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Nat.instMonoid
โ€”exists_pow_mem_center_of_inseparable
pow_one
pow_zero
exists_separable_and_not_isCentral ๐Ÿ“–mathematicalโ€”Subring
DivisionRing.toRing
SetLike.instMembership
Subring.instSetLike
Subring.center
IsSeparable
Subring.instCommRingSubtypeMemCenter
Algebra.instSubtypeMemSubringCenter
โ€”ExpChar.exists
DivisionRing.isDomain
Mathlib.Tactic.Push.not_and_eq
Subring.eq_top_iff'
Subring.zero_mem
smulCommClass_self
IsScalarTower.left
Subring.mem_center_iff
exist_pow_eq_zero_of_le
expChar_pow_pos
Pi.zero_apply
Nat.find_spec
Nat.find_min
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.cast_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Nat.find.congr_simp
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
inv_mul_cancelโ‚€
mul_inv_cancelโ‚€
eq_of_sub_eq_zero
Algebra.to_smulCommClass
LinearMap.mulLeft_apply
IsScalarTower.right
LinearMap.mulRight_apply
Function.iterate_succ_apply'
one_mul
mul_assoc
mul_one
mul_sub_left_distrib
inv_mul_cancel_of_invertible
mul_sub
exists_pow_mem_center_of_inseparable
one_ne_zero
NeZero.one
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
right_eq_add
AddRightCancelSemigroup.toIsRightCancelAdd
IsMulCentral.comm
GroupWithZero.conj_powโ‚€
one_pow
add_pow_expChar_pow_of_commute
Commute.one_left
sub_eq_iff_eq_add
exists_separable_and_not_isCentral' ๐Ÿ“–mathematicalโ€”Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
โ€”le_bot_iff
Algebra.IsCentral.out
Eq.trans_ne
Subalgebra.toSubring_injective
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
IsScalarTower.of_algebraMap_eq
IsScalarTower.algebraMap_apply
RingEquiv.apply_symm_apply
Algebra.IsAlgebraic.tower_top
exists_separable_and_not_isCentral
Subalgebra.center_toSubring
IsSeparable.tower_top

---

โ† Back to Index