Documentation Verification Report

KummerExtension

πŸ“ Source: Mathlib/FieldTheory/KummerExtension.lean

Statistics

MetricCount
DefinitionsAdjoinRootXPowSubCEquivToRootsOfUnity, «termK[_√_]», adjoinRootXPowSubCEquiv, autAdjoinRootXPowSubC, autAdjoinRootXPowSubCEquiv, autAdjoinRootXPowSubCHom, autEquivRootsOfUnity, autEquivZmod, rootOfSplitsXPowSubC
9
Theoremsadjoin_root_eq_top_of_isSplittingField, adjoin_root_eq_top_of_isSplittingField, separable_X_pow_sub_C_of_irreducible, X_pow_mul_sub_C_irreducible, X_pow_sub_C_eq_prod, X_pow_sub_C_irreducible_iff_forall_prime_of_odd, X_pow_sub_C_irreducible_iff_of_odd, X_pow_sub_C_irreducible_iff_of_prime_pow, X_pow_sub_C_irreducible_of_odd, X_pow_sub_C_irreducible_of_prime_pow, X_pow_sub_C_splits_of_isPrimitiveRoot, adjoinRootXPowSubCEquiv_root, adjoinRootXPowSubCEquiv_symm_eq_root, autAdjoinRootXPowSubCEquiv_root, autAdjoinRootXPowSubCEquiv_symm_smul, autAdjoinRootXPowSubC_root, autEquivRootsOfUnity_apply_rootOfSplit, autEquivRootsOfUnity_smul, autEquivZmod_symm_apply_intCast, autEquivZmod_symm_apply_natCast, exists_root_adjoin_eq_top_of_isCyclic, finrank_of_isSplittingField_X_pow_sub_C, irreducible_X_pow_sub_C_of_root_adjoin_eq_top, isCyclic_of_isSplittingField_X_pow_sub_C, isCyclic_tfae, isGalois_of_isSplittingField_X_pow_sub_C, isSplittingField_AdjoinRoot_X_pow_sub_C, isSplittingField_X_pow_sub_C_of_root_adjoin_eq_top, rootOfSplitsXPowSubC_pow
29
Total38

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_root_eq_top_of_isSplittingField πŸ“–mathematicalFinset.Nonempty
primitiveRoots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
adjoin
Set
Set.instSingletonSet
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”instIsDomain
Subalgebra.map_injective
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.injective
map_top
AlgHom.range_eq_top
AlgEquiv.surjective
AlgHom.map_adjoin
Set.image_singleton
AlgHom.coe_coe
adjoinRootXPowSubCEquiv_symm_eq_root
AdjoinRoot.adjoinRoot_eq_top

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_root_eq_top_of_isSplittingField πŸ“–mathematicalFinset.Nonempty
primitiveRoots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”instIsDomain
eq_adjoin_of_eq_algebra_adjoin
Algebra.adjoin_root_eq_top_of_isSplittingField

KummerExtension

Definitions

NameCategoryTheorems
Β«termK[_√_]Β» πŸ“–CompOpβ€”

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
separable_X_pow_sub_C_of_irreducible πŸ“–mathematicalFinset.Nonempty
primitiveRoots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
Separable
Semifield.toCommSemiring
β€”instIsDomain
ne_zero_of_irreducible_X_pow_sub_C
pow_one
separable_X_sub_C
separable_map
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_sub
map_pow
map_C
map_X
AdjoinRoot.algebraMap_eq
X_pow_sub_C_eq_prod
IsPrimitiveRoot.map_of_injective
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mem_primitiveRoots
RingHom.injective
DivisionRing.isSimpleRing
root_X_pow_sub_C_pow
separable_prod_X_sub_C_iff'
IsPrimitiveRoot.injOn_pow_mul
IsDomain.toIsCancelMulZero
root_X_pow_sub_C_ne_zero
lt_of_le_of_ne

(root)

Definitions

NameCategoryTheorems
AdjoinRootXPowSubCEquivToRootsOfUnity πŸ“–CompOpβ€”
adjoinRootXPowSubCEquiv πŸ“–CompOp
2 mathmath: adjoinRootXPowSubCEquiv_symm_eq_root, adjoinRootXPowSubCEquiv_root
autAdjoinRootXPowSubC πŸ“–CompOp
1 mathmath: autAdjoinRootXPowSubC_root
autAdjoinRootXPowSubCEquiv πŸ“–CompOp
2 mathmath: autAdjoinRootXPowSubCEquiv_root, autAdjoinRootXPowSubCEquiv_symm_smul
autAdjoinRootXPowSubCHom πŸ“–CompOpβ€”
autEquivRootsOfUnity πŸ“–CompOp
2 mathmath: autEquivRootsOfUnity_apply_rootOfSplit, autEquivRootsOfUnity_smul
autEquivZmod πŸ“–CompOp
2 mathmath: autEquivZmod_symm_apply_natCast, autEquivZmod_symm_apply_intCast
rootOfSplitsXPowSubC πŸ“–CompOp
2 mathmath: rootOfSplitsXPowSubC_pow, autEquivRootsOfUnity_apply_rootOfSplit

Theorems

NameKindAssumesProvesValidatesDepends On
X_pow_mul_sub_C_irreducible πŸ“–β€”Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
IntermediateField.toField
IntermediateField.AdjoinSimple.gen
β€”β€”Polynomial.not_irreducible_C
map_sub
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
RingHom.map_one
pow_zero
pow_mul
Polynomial.sub_comp
Polynomial.pow_comp
Polynomial.X_comp
Polynomial.C_comp
Polynomial.irreducible_comp
Polynomial.monic_X_pow_sub_C
Polynomial.monic_X_pow
IsScalarTower.left
Polynomial.map_pow
Polynomial.map_X
X_pow_sub_C_eq_prod πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial
Polynomial.instSub
CommRing.toRing
Polynomial.semiring
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Finset.prod
Polynomial.commRing
Finset.range
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”FaithfulSMul.algebraMap_injective
FractionRing.instFaithfulSMul
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsDomain.toNontrivial
Polynomial.map_injective
Polynomial.map_sub
Polynomial.map_pow
Polynomial.map_X
Polynomial.map_C
Finset.prod_congr
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Polynomial.map_prod
Polynomial.map_mul
IsPrimitiveRoot.map_of_injective
X_pow_sub_C_irreducible_iff_forall_prime_of_odd πŸ“–mathematicalOdd
Nat.instSemiring
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”pow_ne_of_irreducible_X_pow_sub_C
Nat.Prime.ne_one
X_pow_sub_C_irreducible_of_odd
X_pow_sub_C_irreducible_iff_of_odd πŸ“–mathematicalOdd
Nat.instSemiring
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”pow_ne_of_irreducible_X_pow_sub_C
X_pow_sub_C_irreducible_of_odd
Nat.Prime.ne_one
X_pow_sub_C_irreducible_iff_of_prime_pow πŸ“–mathematicalNat.PrimeIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
Nat.instMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”pow_ne_of_irreducible_X_pow_sub_C
dvd_pow
dvd_rfl
Nat.Prime.ne_one
X_pow_sub_C_irreducible_of_prime_pow
X_pow_sub_C_irreducible_of_odd πŸ“–mathematicalOdd
Nat.instSemiring
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”induction_on_primes
pow_one
Polynomial.irreducible_X_sub_C
instIsDomain
mul_comm
X_pow_mul_sub_C_irreducible
X_pow_sub_C_irreducible_of_prime
dvd_mul_right
Polynomial.degree_X_pow_sub_C
Nat.Prime.pos
IsLocalRing.toNontrivial
Field.instIsLocalRing
Nat.odd_mul
dvd_mul_of_dvd_right
IsScalarTower.left
map_pow
MonoidHom.instMonoidHomClass
IntermediateField.adjoin.powerBasis_gen
Algebra.PowerBasis.norm_gen_eq_coeff_zero_minpoly
Polynomial.natDegree_sub_C
Polynomial.natDegree_pow
IsDomain.to_noZeroDivisors
Polynomial.natDegree_X
mul_one
Odd.neg_pow
one_pow
IntermediateField.minpoly_gen
Polynomial.coeff_sub
Polynomial.coeff_X_pow
Nat.Prime.ne_zero
Polynomial.coeff_C_zero
zero_sub
mul_neg
neg_mul
one_mul
neg_neg
X_pow_sub_C_irreducible_of_prime_pow πŸ“–mathematicalNat.PrimeIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
Nat.instMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”X_pow_sub_C_irreducible_of_odd
Odd.pow
Nat.Prime.odd_of_ne_two
Nat.prime_dvd_prime_iff_eq
Nat.Prime.dvd_of_dvd_pow
X_pow_sub_C_splits_of_isPrimitiveRoot πŸ“–mathematicalIsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.Splits
Polynomial
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.semiring
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”pow_zero
RingHom.map_one
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
instIsDomain
Polynomial.splits_iff_card_roots
Polynomial.nthRoots.eq_1
IsPrimitiveRoot.card_nthRoots
Polynomial.natDegree_X_pow_sub_C
IsLocalRing.toNontrivial
Field.instIsLocalRing
adjoinRootXPowSubCEquiv_root πŸ“–mathematicalFinset.Nonempty
primitiveRoots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
AlgEquiv
AdjoinRoot
CommRing.toCommSemiring
AdjoinRoot.instCommRing
AdjoinRoot.instAlgebra
Algebra.id
AlgEquiv.instFunLike
adjoinRootXPowSubCEquiv
AdjoinRoot.root
β€”instIsDomain
adjoinRootXPowSubCEquiv.eq_1
AlgEquiv.coe_ofBijective
AdjoinRoot.liftAlgHom_root
adjoinRootXPowSubCEquiv_symm_eq_root πŸ“–mathematicalFinset.Nonempty
primitiveRoots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
AlgEquiv
AdjoinRoot
CommRing.toCommSemiring
AdjoinRoot.instCommRing
AdjoinRoot.instAlgebra
Algebra.id
AlgEquiv.instFunLike
AlgEquiv.symm
adjoinRootXPowSubCEquiv
AdjoinRoot.root
β€”instIsDomain
AlgEquiv.injective
AlgEquiv.apply_symm_apply
adjoinRootXPowSubCEquiv_root
autAdjoinRootXPowSubCEquiv_root πŸ“–mathematicalFinset.Nonempty
primitiveRoots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
AlgEquiv
AdjoinRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
Semifield.toCommSemiring
AdjoinRoot.instCommRing
AdjoinRoot.instAlgebra
Algebra.id
AlgEquiv.instFunLike
MulEquiv
Units
CommMonoid.toMonoid
CommRing.toCommMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
Subgroup.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
autAdjoinRootXPowSubCEquiv
AdjoinRoot.root
AdjoinRoot.instSMulAdjoinRoot
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsScalarTower.right
Units.val
β€”instIsDomain
autAdjoinRootXPowSubC_root
autAdjoinRootXPowSubCEquiv_symm_smul πŸ“–mathematicalFinset.Nonempty
primitiveRoots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Units
CommMonoid.toMonoid
CommRing.toCommMonoid
AdjoinRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
Units.instSMul
AdjoinRoot.instSMulAdjoinRoot
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsScalarTower.right
Semifield.toCommSemiring
Algebra.id
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
MulEquiv
AlgEquiv
AdjoinRoot.instCommRing
AdjoinRoot.instAlgebra
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
autAdjoinRootXPowSubCEquiv
AdjoinRoot.root
AlgEquiv.instFunLike
β€”instIsDomain
IsScalarTower.right
Algebra.smul_def
rootsOfUnityEquivOfPrimitiveRoots_symm_apply
ite_mul
one_mul
root_X_pow_sub_C_eq_zero_iff
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
div_mul_cancelβ‚€
autAdjoinRootXPowSubC_root πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Semifield.toCommSemiring
AdjoinRoot.instCommRing
AdjoinRoot.instAlgebra
Algebra.id
AlgEquiv.instFunLike
MonoidHom
Units
CommMonoid.toMonoid
CommRing.toCommMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
AlgEquiv.aut
MonoidHom.instFunLike
autAdjoinRootXPowSubC
AdjoinRoot.root
AdjoinRoot.instSMulAdjoinRoot
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsScalarTower.right
Units.val
β€”IsScalarTower.right
AdjoinRoot.liftAlgHom_root
autEquivRootsOfUnity_apply_rootOfSplit πŸ“–mathematicalFinset.Nonempty
primitiveRoots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
AlgEquiv
Semifield.toCommSemiring
AlgEquiv.instFunLike
rootOfSplitsXPowSubC
NeZero.pos
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
Units
CommMonoid.toMonoid
CommRing.toCommMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Subgroup.instDistribMulActionSubtypeMem
Units.instDistribMulAction
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
AlgEquiv.aut
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
autEquivRootsOfUnity
β€”instIsDomain
NeZero.pos
Nat.instCanonicallyOrderedAdd
MulEquiv.surjective
MulEquiv.apply_symm_apply
rootOfSplitsXPowSubC_pow
autEquivRootsOfUnity.eq_1
adjoinRootXPowSubCEquiv_symm_eq_root
IsScalarTower.right
autAdjoinRootXPowSubCEquiv_root
map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
adjoinRootXPowSubCEquiv_root
autEquivRootsOfUnity_smul πŸ“–mathematicalFinset.Nonempty
primitiveRoots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
Units
CommMonoid.toMonoid
CommRing.toCommMonoid
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
rootsOfUnity
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Subgroup.instDistribMulActionSubtypeMem
Units.instDistribMulAction
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
MulEquiv
AlgEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
AlgEquiv.aut
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
autEquivRootsOfUnity
AlgEquiv.instFunLike
β€”instIsDomain
NeZero.pos
Nat.instCanonicallyOrderedAdd
IsPrimitiveRoot.nthRoots_eq
IsPrimitiveRoot.map_of_injective
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mem_primitiveRoots
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
rootOfSplitsXPowSubC_pow
Polynomial.mem_nthRoots
map_smul
SemilinearMapClass.toMulActionSemiHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
autEquivRootsOfUnity_apply_rootOfSplit
SMulCommClass.smul_comm
Subgroup.smulCommClass_left
Units.smulCommClass_left
smulCommClass_self
autEquivZmod_symm_apply_intCast πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
IsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AlgEquiv
AlgEquiv.instFunLike
MulEquiv
Multiplicative
ZMod
Multiplicative.mul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
autEquivZmod
Equiv
Equiv.instEquivLike
Multiplicative.ofAdd
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
Algebra.toSMul
DivInvMonoid.toZPow
DivisionRing.toDivInvMonoid
β€”ne_zero_of_irreducible_X_pow_sub_C
instIsDomain
mem_primitiveRoots
autEquivRootsOfUnity_smul
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
IsPrimitiveRoot.zmodEquivZPowers_apply_coe_int
MulEquiv.apply_symm_apply
Units.val_zpow_eq_zpow_val
autEquivZmod_symm_apply_natCast πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
IsPrimitiveRoot
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AlgEquiv
AlgEquiv.instFunLike
MulEquiv
Multiplicative
ZMod
Multiplicative.mul
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
ZMod.commRing
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
autEquivZmod
Equiv
Equiv.instEquivLike
Multiplicative.ofAdd
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Algebra.toSMul
β€”Int.cast_natCast
zpow_natCast
autEquivZmod_symm_apply_intCast
exists_root_adjoin_eq_top_of_isCyclic πŸ“–mathematicalFinset.Nonempty
primitiveRoots
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
instIsDomain
Set
Set.instMembership
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
IntermediateField.adjoin
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”instIsDomain
orderOf_eq_card_of_forall_mem_zpowers
smulCommClass_self
IsScalarTower.left
minpoly_algEquiv_toLinearMap
isOfFinOrder_of_finite
Finite.algEquiv
Finite.algHom
Module.Free.of_divisionRing
IsGalois.card_aut_eq_finrank
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.eval_sub
Polynomial.eval_pow
Polynomial.eval_X
Polynomial.eval_one
IsPrimitiveRoot.pow_eq_one
mem_primitiveRoots
Module.finrank_pos
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Module.End.HasEigenvalue.exists_hasEigenvector
Module.End.hasEigenvalue_of_isRoot
Module.End.HasEigenvector.pow_apply
IntermediateField.mem_bot
OrderIso.map_bot
mem_powers_iff_mem_zpowers
smul_pow'
Submonoid.smul_def
AlgEquiv.smul_def
smul_pow
IsScalarTower.right
Algebra.to_smulCommClass
pow_mul
mul_comm
one_pow
one_smul
OrderIso.injective
TopHomClass.map_top
InfTopHomClass.toTopHomClass
FrameHomClass.toInfTopHomClass
CompleteLatticeHomClass.toFrameHomClass
OrderIsoClass.toCompleteLatticeHomClass
OrderIso.instOrderIsoClass
eq_top_iff
IntermediateField.mem_adjoin_simple_self
IsPrimitiveRoot.dvd_of_pow_eq_one
smul_left_injective
IsDomain.toIsCancelMulZero
pow_card_eq_one'
OneMemClass.one_mem
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
finrank_of_isSplittingField_X_pow_sub_C πŸ“–mathematicalFinset.Nonempty
primitiveRoots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Module.finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semifield.toCommSemiring
β€”instIsDomain
Polynomial.IsSplittingField.finiteDimensional
isGalois_of_isSplittingField_X_pow_sub_C
ne_zero_of_irreducible_X_pow_sub_C
IsGalois.card_aut_eq_finrank
Nat.card_congr
mem_primitiveRoots
Nat.card_zmod
irreducible_X_pow_sub_C_of_root_adjoin_eq_top πŸ“–mathematicalMonoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Module.finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
IntermediateField.adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Irreducible
Polynomial
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.X
Polynomial.C
β€”minpoly.unique
Polynomial.monic_X_pow_sub_C
LT.lt.ne
Module.finrank_pos
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Polynomial.evalβ‚‚_sub
Polynomial.evalβ‚‚_X_pow
Polynomial.evalβ‚‚_C
sub_self
le_trans
Polynomial.degree_X_pow_sub_C
Polynomial.degree_eq_natDegree
minpoly.ne_zero
IsIntegral.of_finite
IsScalarTower.left
IntermediateField.adjoin.finrank
Nat.cast_le
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
Eq.ge
finrank_top
Polynomial.degree_le_of_dvd
IsDomain.to_noZeroDivisors
minpoly.dvd
Polynomial.Monic.ne_zero
minpoly.irreducible
isCyclic_of_isSplittingField_X_pow_sub_C πŸ“–mathematicalFinset.Nonempty
primitiveRoots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
IsCyclic
AlgEquiv
Semifield.toCommSemiring
DivInvMonoid.toZPow
Group.toDivInvMonoid
AlgEquiv.aut
β€”instIsDomain
ne_zero_of_irreducible_X_pow_sub_C
isCyclic_of_surjective
isCyclic_multiplicative
ZMod.instIsAddCyclic
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
mem_primitiveRoots
MulEquiv.surjective
isCyclic_tfae πŸ“–mathematicalFinset.Nonempty
primitiveRoots
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
instIsDomain
List.TFAE
IsGalois
IsCyclic
AlgEquiv
DivInvMonoid.toZPow
Group.toDivInvMonoid
AlgEquiv.aut
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Polynomial.IsSplittingField
Set
Set.instMembership
Set.range
CommSemiring.toSemiring
algebraMap
IntermediateField
IntermediateField.adjoin
Set.instSingletonSet
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”instIsDomain
NeZero.of_pos
Module.finrank_pos
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
exists_root_adjoin_eq_top_of_isCyclic
irreducible_X_pow_sub_C_of_root_adjoin_eq_top
isSplittingField_X_pow_sub_C_of_root_adjoin_eq_top
isGalois_of_isSplittingField_X_pow_sub_C
isCyclic_of_isSplittingField_X_pow_sub_C
List.tfae_of_cycle
isGalois_of_isSplittingField_X_pow_sub_C πŸ“–mathematicalFinset.Nonempty
primitiveRoots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
IsGaloisβ€”instIsDomain
IsGalois.of_separable_splitting_field
Polynomial.separable_X_pow_sub_C_of_irreducible
isSplittingField_AdjoinRoot_X_pow_sub_C πŸ“–mathematicalFinset.Nonempty
primitiveRoots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Polynomial.IsSplittingField
AdjoinRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot.instField
Algebra
Semifield.toCommSemiring
AdjoinRoot.instAlgebra
Algebra.id
β€”instIsDomain
Polynomial.map_sub
Polynomial.map_pow
Polynomial.map_C
Polynomial.map_X
X_pow_sub_C_splits_of_isPrimitiveRoot
IsPrimitiveRoot.map_of_injective
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mem_primitiveRoots
ne_zero_of_irreducible_X_pow_sub_C
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
root_X_pow_sub_C_pow
eq_top_iff
AdjoinRoot.adjoinRoot_eq_top
Algebra.adjoin_mono
Set.singleton_subset_iff
Polynomial.mem_rootSet_of_ne
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Polynomial.X_pow_sub_C_ne_zero
Polynomial.aeval_def
AdjoinRoot.algebraMap_eq
AdjoinRoot.evalβ‚‚_root
isSplittingField_X_pow_sub_C_of_root_adjoin_eq_top πŸ“–mathematicalFinset.Nonempty
primitiveRoots
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
instIsDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
IntermediateField.adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Polynomial.IsSplittingField
Polynomial
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.semiring
Polynomial.X
Polynomial.C
β€”instIsDomain
Polynomial.map_sub
Polynomial.map_pow
Polynomial.map_C
Polynomial.map_X
X_pow_sub_C_splits_of_isPrimitiveRoot
IsPrimitiveRoot.map_of_injective
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mem_primitiveRoots
Module.finrank_pos
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
RingHom.injective
DivisionRing.isSimpleRing
eq_top_iff
IntermediateField.top_toSubalgebra
IntermediateField.adjoin_simple_toSubalgebra_of_isAlgebraic
IsAlgebraic.of_finite
Algebra.adjoin_mono
Set.singleton_subset_iff
Polynomial.mem_rootSet_of_ne
Polynomial.X_pow_sub_C_ne_zero
Polynomial.aeval_def
Polynomial.evalβ‚‚_sub
Polynomial.evalβ‚‚_X_pow
Polynomial.evalβ‚‚_C
sub_self
rootOfSplitsXPowSubC_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
rootOfSplitsXPowSubC
NeZero.pos
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Nat.instPartialOrder
Nat.instCanonicallyOrderedAdd
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
RingHom.instFunLike
algebraMap
β€”Polynomial.IsSplittingField.splits
Polynomial.map_sub
Polynomial.map_pow
Polynomial.map_X
Polynomial.map_C
Polynomial.degree_X_pow_sub_C
NeZero.pos
Nat.instCanonicallyOrderedAdd
IsLocalRing.toNontrivial
Field.instIsLocalRing
WithBot.charZero
Nat.instCharZero
Polynomial.eval_rootOfSplits
Polynomial.eval_map
Polynomial.evalβ‚‚_sub
Polynomial.evalβ‚‚_X_pow
Polynomial.evalβ‚‚_C

---

← Back to Index