Documentation Verification Report

Basic

πŸ“ Source: Mathlib/FieldTheory/Minpoly/Basic.lean

Statistics

MetricCount
Definitionsminpoly
1
Theoremsaeval, aeval_algHom, aeval_ne_zero_of_dvdNotUnit_minpoly, algEquiv_eq, algHom_eq, algebraMap_eq, degree_eq_one_iff, degree_pos, eq_X_sub_C_of_algebraMap_inj, eq_of_linearIndependent, eq_zero, irreducible, map_ne_one, mem_range_of_degree_eq_one, min, monic, natDegree_eq_one_iff, natDegree_pos, ne_one, ne_zero, ne_zero_iff, not_isUnit, subsingleton, two_le_natDegree_iff, two_le_natDegree_subalgebra, unique'
26
Total27

(root)

Definitions

NameCategoryTheorems
minpoly πŸ“–CompOp
208 mathmath: NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply', minpoly.prime_of_isIntegrallyClosed, minpoly.ToAdjoin.injective, mem_perfectClosure_iff_natSepDegree_eq_one, IntermediateField.aeval_gen_minpoly, minpoly.unique, IsPurelyInseparable.minpoly_natDegree_eq', AlgEquiv.coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, IntermediateField.adjoin.finrank, IsPurelyInseparable.minpoly_eq', AdjoinRoot.minpoly_root, eval_minpolyDiv_self, IsPrimitiveRoot.totient_le_degree_minpoly, evalβ‚‚_minpolyDiv_self, isConjRoot_iff_mem_minpoly_aroots, IntermediateField.adjoinRootEquivAdjoin_symm_apply_gen, IsPrimitiveRoot.minpoly_dvd_pow_mod, Algebra.PowerBasis.norm_gen_eq_coeff_zero_minpoly, minpoly.monic, natDegree_minpolyDiv_succ, minpoly.eq_iff_aeval_eq_zero, sum_smul_minpolyDiv_eq_X_pow, minpoly.eq_of_irreducible, Normal.splits', PowerBasis.quotientEquivQuotientMinpolyMap_apply, Normal.minpoly_eq_iff_mem_orbit, minpoly_algHom_toLinearMap, PowerBasis.ofAdjoinEqTop'_dim, minpoly.natSepDegree_eq_one_iff_eq_X_pow_sub_C, isConjRoot_def, minpoly.coeff_zero_eq_zero, IsPrimitiveRoot.is_roots_of_minpoly, minpoly.degree_pos, IsPrimitiveRoot.powerBasis_dim, AlgEquiv.adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, AdjoinRoot.Minpoly.toAdjoin.surjective, Matrix.minpoly_dvd_charpoly, IsNormalClosure.adjoin_rootSet, IntermediateField.minpoly_gen, normalClosure_eq_iSup_adjoin', Algebra.discr_powerBasis_eq_norm, PowerBasis.quotientEquivQuotientMinpolyMap_apply_mk, Normal.splits, minpoly.sub_algebraMap, isConjRoot_iff_aeval_eq_zero, IsPrimitiveRoot.minpoly_eq_pow_coprime, solvableByRad.isSolvable, IsPurelyInseparable.minpoly_eq, minpoly.degree_le, IsPurelyInseparable.natSepDegree_eq_one, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply_mk, minpoly.natSepDegree_eq_one_iff_eq_X_sub_C_pow, IsNormalClosure.splits, minpoly.two_le_natDegree_iff, minpoly.map_eq_of_isSeparable_of_isPurelyInseparable, minpoly.frobenius_of_isSeparable, charpoly_leftMulMatrix, minpoly.dvd_iff, LinearMap.minpoly_toMatrix', Algebra.adjoin.powerBasis_dim, minpoly.algEquiv_eq, PowerBasis.liftEquiv_symm_apply, ConjRootClass.minpoly_mk, natDegree_minpolyDiv_lt, minpoly.isIntegrallyClosed_eq_field_fractions, AdjoinRoot.Minpoly.coe_toAdjoin, traceForm_dualSubmodule_adjoin, IsIntegrallyClosed.minpoly.unique, minpoly.eq_X_sub_C_of_algebraMap_inj, spectralNorm.spectralNorm_pow_natDegree_eq_prod_roots, LinearMap.minpoly_dvd_charpoly, PowerBasis.trace_gen_eq_nextCoeff_minpoly, minpoly.degree_le_of_ne_zero, isConjRoot_iff_mem_minpoly_rootSet, KummerDedekind.emultiplicity_factors_map_eq_emultiplicity, IsPrimitiveRoot.minpoly_sub_one_eq_cyclotomic_comp, trace_eq_finrank_mul_minpoly_nextCoeff, minpoly.algHom_eq, PowerBasis.degree_minpoly, IntermediateField.exists_finset_of_mem_supr'', Algebra.adjoin.powerBasis'_dim, minpoly.ker_aeval_eq_span_minpoly, IsPrimitiveRoot.minpoly_dvd_expand, minpoly.eq_of_irreducible_of_monic, minpoly.isRadical, minpoly.prime, IsPrimitiveRoot.minpoly_dvd_mod_p, minpoly.aeval, isPurelyInseparable_iff_natSepDegree_eq_one, IsPrimitiveRoot.separable_minpoly_mod, minpoly.eq_of_linearIndependent, LinearMap.hasEigenvalue_zero_tfae, Matrix.minpoly_toLin', IntermediateField.adjoinRootEquivAdjoin_apply_root, AdjoinRoot.Minpoly.coe_toAdjoin_mk_X, IntermediateField.finSepDegree_adjoin_simple_eq_natSepDegree, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, minpoly.dvd_map_of_isScalarTower, Module.End.isRoot_of_hasEigenvalue, minpoly.isIntegrallyClosed_dvd_iff, LinearMap.minpoly_toMatrix, minpoly.subsingleton, Algebra.IsUnramifiedAt.not_minpoly_sq_dvd, isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow, minpoly.eq_zero, IsPrimitiveRoot.minpoly_eq_cyclotomic_of_irreducible, IsPrimitiveRoot.subOnePowerBasis_dim, minpoly.aeval_algHom, minpoly.IsIntegrallyClosed.degree_le_of_ne_zero, IsPurelyInseparable.minpoly_natDegree_eq, minpoly.add_algebraMap, Algebra.IsAlgebraic.isNormalClosure_iff, IsConjRoot.aeval_eq_zero, IntermediateField.algHomAdjoinIntegralEquiv_symm_apply_gen, isPurelyInseparable_iff_minpoly_eq_X_pow_sub_C, RingOfIntegers.ZModXQuotSpanEquivQuotSpan_mk_apply, Polynomial.cyclotomic_eq_minpoly_rat, minpoly.min, minpoly.ofSubring, normal_iff, IsPrimitiveRoot.squarefree_minpoly_mod, Field.primitive_element_iff_minpoly_degree_eq, minpoly.dvd_map_of_isScalarTower', PowerBasis.ofGenMemAdjoin'_dim, Polynomial.span_minpoly_eq_annihilator, NumberField.Embeddings.coeff_bdd_of_norm_le, IsIntegral.mem_span_pow, spectralNorm.spectralNorm_eq_norm_coeff_zero_rpow, Algebra.normalizedTrace_minpoly, minpoly.eq_X_sub_C', Field.primitive_element_iff_minpoly_natDegree_eq, coeff_minpolyDiv, IntermediateField.minpoly_eq, minpoly.degree_eq_one_iff, aeval_derivative_mem_differentIdeal, PowerBasis.minpolyGen_eq, IsPurelyInseparable.minpoly_eq_X_pow_sub_C, minpoly.isIntegrallyClosed_dvd, FiniteField.minpoly_frobeniusAlgHom, minpoly.equivAdjoin_toAlgHom, Module.End.hasEigenvalue_iff_isRoot, minpoly_algEquiv_toLinearMap, minpoly.natSepDegree_eq_one_iff_pow_mem, minpoly.zero, minpoly.one, minpoly.neg, normalClosure_eq_iSup_adjoin, IsAdjoinRoot.mkOfAdjoinEqTop_root, IsPurelyInseparable.minpoly_eq_X_sub_C_pow, minpoly.not_isUnit, NumberField.hermiteTheorem.natDegree_le_rankOfDiscrBdd, IsIntegrallyClosed.minpoly_smul, minpolyDiv_spec, PowerBasis.liftEquiv'_apply_coe, minpoly.coe_equivAdjoin, Algebra.adjoin.powerBasis'_minpoly_gen, minpoly.natDegree_le, PowerBasis.ofAdjoinEqTop_dim, AdjoinRoot.minpoly_powerBasis_gen, Module.End.IsSemisimple.minpoly_squarefree, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply, Normal.out, minpoly.dvd, FixedPoints.minpoly_eq_minpoly, conductor_mul_differentIdeal, minpoly.eq_iff_aeval_minpoly_eq_zero, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, minpoly.natDegree_eq_one_iff, IntermediateField.adjoin_minpoly_coeff_of_exists_primitive_element, IsPrimitiveRoot.pow_isRoot_minpoly, PowerBasis.liftEquiv'_symm_apply_apply, Polynomial.annIdealGenerator_eq_minpoly, minpoly.natSepDegree_eq_one_iff_eq_expand_X_sub_C, Module.Basis.traceDual_powerBasis_eq, minpoly.iterateFrobenius_of_isSeparable, LinearMap.not_hasEigenvalue_zero_tfae, Algebra.IsAlgebraic.range_eval_eq_rootSet_minpoly, minpoly.degree_dvd, linearIndependent_pow, IsPrimitiveRoot.minpoly_eq_pow, NumberField.Embeddings.range_eval_eq_rootSet_minpoly, minpoly.irreducible, minpoly.algebraMap_eq, minpoly.natDegree_pos, PowerBasis.natDegree_minpoly, IsPrimitiveRoot.minpoly_dvd_cyclotomic, NumberField.RingOfIntegers.minpoly_coe, IsAdjoinRootMonic.minpoly_eq, Polynomial.cyclotomic_eq_minpoly, Matrix.minpoly_toLin, AdjoinRoot.minpoly_powerBasis_gen_of_monic, IsGalois.splits, minpoly.ker_eval, minpoly.eq_X_sub_C, IntermediateField.isPurelyInseparable_adjoin_simple_iff_natSepDegree_eq_one, minpoly.map_eq_of_equiv_equiv, Algebra.IsAlgebraic.normalClosure_le_iSup_adjoin, Valuation.coeff_zero_minpoly, trace_adjoinSimpleGen, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, minpoly.unique', IntermediateField.adjoin.powerBasis_dim, minpoly.two_le_natDegree_subalgebra, minpoly.isIntegrallyClosed_eq_field_fractions', natDegree_minpolyDiv, PowerBasis.liftEquiv_apply_coe, IsPrimitiveRoot.minpoly_dvd_x_pow_sub_one, KummerDedekind.quotMapEquivQuotQuotMap_symm_apply

minpoly

Theorems

NameKindAssumesProvesValidatesDepends On
aeval πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Polynomial.degree_lt_wf
WellFounded.min_mem
Polynomial.aeval_zero
aeval_algHom πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Polynomial.aeval_algHom
AlgHom.coe_comp
aeval
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
aeval_ne_zero_of_dvdNotUnit_minpoly πŸ“–β€”IsIntegral
Polynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
DvdNotUnit
Polynomial
CommSemiring.toCommMonoidWithZero
Polynomial.commSemiring
minpoly
β€”β€”LE.le.not_gt
min
Polynomial.degree_lt_degree
Polynomial.Monic.of_mul_monic_left
monic
Polynomial.Monic.natDegree_mul
lt_add_of_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
lt_of_not_ge
Polynomial.eq_C_of_natDegree_le_zero
Polynomial.leadingCoeff.eq_1
Polynomial.Monic.leadingCoeff
Polynomial.C_1
isUnit_one
algEquiv_eq πŸ“–mathematicalβ€”minpoly
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
Ring.toSemiring
AlgEquiv.instFunLike
β€”algHom_eq
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
AlgEquiv.injective
algHom_eq πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
AlgHom.funLike
minpolyβ€”isIntegral_algHom_iff
Polynomial.aeval_algHom
WellFounded.min.congr_simp
map_eq_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
algebraMap_eq πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
RingHom.instFunLike
algebraMap
minpoly
CommRing.toRing
β€”algHom_eq
degree_eq_one_iff πŸ“–mathematicalβ€”Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
WithBot
WithBot.one
Nat.instOne
Subring
SetLike.instMembership
Subring.instSetLike
RingHom.range
CommRing.toRing
algebraMap
Ring.toSemiring
β€”mem_range_of_degree_eq_one
LE.le.antisymm
min
Polynomial.monic_X_sub_C
Polynomial.aeval_sub
Polynomial.aeval_X
Polynomial.aeval_C
sub_self
Polynomial.degree_X_sub_C
Module.nontrivial
Nat.WithBot.add_one_le_of_lt
degree_pos
isIntegral_algebraMap
degree_pos πŸ“–mathematicalIsIntegralWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
β€”Polynomial.natDegree_pos_iff_degree_pos
natDegree_pos
eq_X_sub_C_of_algebraMap_inj πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
RingHom.instFunLike
algebraMap
minpoly
Polynomial
Polynomial.instSub
CommRing.toRing
Polynomial.X
Polynomial.semiring
Polynomial.C
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
unique'
Polynomial.monic_X_sub_C
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.aeval_C
Polynomial.aeval_X
sub_self
Polynomial.eq_C_of_natDegree_eq_zero
Polynomial.natDegree_X_sub_C
Polynomial.natDegree_lt_natDegree_iff
map_ne_zero_iff
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.C_ne_zero
eq_of_linearIndependent πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Polynomial.degree
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
LinearIndependent
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
NonUnitalNonAssocSemiring.toAddCommMonoid
Algebra.toModule
minpolyβ€”unique'
Polynomial.ext
lt_or_ge
Fintype.linearIndependent_iff
Finset.sum_congr
Algebra.smul_def
Finset.sum_range
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.aeval_monomial
Polynomial.as_sum_range'
Polynomial.natDegree_lt_iff_degree_lt
Polynomial.coeff_eq_zero_of_degree_lt
LT.lt.trans_le
WithBot.coe_le_coe
eq_zero πŸ“–mathematicalIsIntegralminpoly
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instZero
β€”β€”
irreducible πŸ“–mathematicalIsIntegralIrreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
minpoly
β€”Polynomial.irreducible_of_monic
IsDomain.to_noZeroDivisors
monic
ne_one
IsDomain.toNontrivial
Polynomial.Monic.isUnit_iff
mul_eq_zero
Polynomial.aeval_mul
aeval
aeval_ne_zero_of_dvdNotUnit_minpoly
Polynomial.Monic.ne_zero
mul_comm
map_ne_one πŸ“–β€”β€”β€”β€”Polynomial.Monic.eq_one_of_map_eq_one
monic
ne_one
eq_zero
Polynomial.map_zero
zero_ne_one
NeZero.one
Polynomial.nontrivial
mem_range_of_degree_eq_one πŸ“–mathematicalPolynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
WithBot
WithBot.one
Nat.instOne
Subring
SetLike.instMembership
Subring.instSetLike
RingHom.range
CommRing.toRing
algebraMap
Ring.toSemiring
β€”ne_of_lt
WithBot.bot_lt_coe
WithBot.coe_one
Polynomial.degree_zero
eq_zero
aeval
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
eq_neg_iff_add_eq_zero
Polynomial.aeval_X
Polynomial.aeval_C
Polynomial.aeval_add
one_mul
Polynomial.C_1
Polynomial.Monic.leadingCoeff
monic
Polynomial.eq_X_add_C_of_degree_eq_one
min πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
minpoly
β€”le_of_not_gt
WellFounded.not_lt_min
Polynomial.degree_lt_wf
monic πŸ“–mathematicalIsIntegralPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
β€”Polynomial.degree_lt_wf
WellFounded.min_mem
natDegree_eq_one_iff πŸ“–mathematicalβ€”Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
Subring
SetLike.instMembership
Subring.instSetLike
RingHom.range
CommRing.toRing
algebraMap
Ring.toSemiring
β€”Polynomial.degree_eq_iff_natDegree_eq_of_pos
zero_lt_one
Nat.instZeroLEOneClass
degree_eq_one_iff
natDegree_pos πŸ“–mathematicalIsIntegralPolynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
β€”pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
Polynomial.eq_C_of_natDegree_eq_zero
Polynomial.Monic.leadingCoeff
monic
Polynomial.C_1
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
NeZero.one
aeval
ne_one πŸ“–β€”β€”β€”β€”one_ne_zero
NeZero.one
aeval
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
ne_zero πŸ“–β€”IsIntegralβ€”β€”Polynomial.Monic.ne_zero
monic
ne_zero_iff πŸ“–mathematicalβ€”IsIntegralβ€”of_not_not
Function.mt
eq_zero
ne_zero
not_isUnit πŸ“–mathematicalβ€”IsUnit
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
minpoly
β€”Polynomial.Monic.eq_one_of_isUnit
monic
ne_one
eq_zero
not_isUnit_zero
Polynomial.nontrivial
RingHom.domain_nontrivial
subsingleton πŸ“–mathematicalβ€”minpoly
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instOne
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
min
Polynomial.monic_one
le_or_gt
Polynomial.Monic.degree_le_zero_iff_eq_one
monic
Polynomial.evalβ‚‚_one
LE.le.not_gt
Polynomial.degree_one
two_le_natDegree_iff πŸ“–mathematicalIsIntegralPolynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
Subring
SetLike.instMembership
Subring.instSetLike
RingHom.range
CommRing.toRing
algebraMap
Ring.toSemiring
β€”iff_not_comm
natDegree_eq_one_iff
not_le
Eq.trans_lt
one_lt_two
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Nat.cast_one
Nat.cast_zero
natDegree_pos
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
two_le_natDegree_subalgebra πŸ“–mathematicalIsIntegral
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Subalgebra.toCommRing
CommRing.toRing
Subalgebra.toAlgebra
Ring.toSemiring
Algebra.id
Polynomial.natDegree
minpoly
β€”two_le_natDegree_iff
Iff.not
Set.ext_iff
Subtype.range_val_subtype
unique' πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Polynomial.instZero
minpolyβ€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
Polynomial.degree_modByMonic_lt
Polynomial.modByMonic_eq_zero_iff_dvd
ne_zero
MulZeroClass.mul_zero
Polynomial.Monic.leadingCoeff
monic
Polynomial.leadingCoeff_mul_monic
mul_comm
add_zero
Eq.trans_le
Polynomial.Monic.natDegree_mul'
Polynomial.natDegree_le_natDegree
min
Polynomial.eq_C_of_natDegree_le_zero
Polynomial.leadingCoeff.eq_1
Polynomial.C_1
mul_one
Polynomial.aeval_modByMonic_eq_self_of_root
aeval

---

← Back to Index