minpoly π | CompOp | 208 mathmath: NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply', minpoly.prime_of_isIntegrallyClosed, minpoly.ToAdjoin.injective, mem_perfectClosure_iff_natSepDegree_eq_one, IntermediateField.aeval_gen_minpoly, minpoly.unique, IsPurelyInseparable.minpoly_natDegree_eq', AlgEquiv.coe_adjoinSingletonEquivAdjoinRootMinpoly_symm, IntermediateField.adjoin.finrank, IsPurelyInseparable.minpoly_eq', AdjoinRoot.minpoly_root, eval_minpolyDiv_self, IsPrimitiveRoot.totient_le_degree_minpoly, evalβ_minpolyDiv_self, isConjRoot_iff_mem_minpoly_aroots, IntermediateField.adjoinRootEquivAdjoin_symm_apply_gen, IsPrimitiveRoot.minpoly_dvd_pow_mod, Algebra.PowerBasis.norm_gen_eq_coeff_zero_minpoly, minpoly.monic, natDegree_minpolyDiv_succ, minpoly.eq_iff_aeval_eq_zero, sum_smul_minpolyDiv_eq_X_pow, minpoly.eq_of_irreducible, Normal.splits', PowerBasis.quotientEquivQuotientMinpolyMap_apply, Normal.minpoly_eq_iff_mem_orbit, minpoly_algHom_toLinearMap, PowerBasis.ofAdjoinEqTop'_dim, minpoly.natSepDegree_eq_one_iff_eq_X_pow_sub_C, isConjRoot_def, minpoly.coeff_zero_eq_zero, IsPrimitiveRoot.is_roots_of_minpoly, minpoly.degree_pos, IsPrimitiveRoot.powerBasis_dim, AlgEquiv.adjoinSingletonEquivAdjoinRootMinpoly_symm_toAlgHom, AdjoinRoot.Minpoly.toAdjoin.surjective, Matrix.minpoly_dvd_charpoly, IsNormalClosure.adjoin_rootSet, IntermediateField.minpoly_gen, normalClosure_eq_iSup_adjoin', Algebra.discr_powerBasis_eq_norm, PowerBasis.quotientEquivQuotientMinpolyMap_apply_mk, Normal.splits, minpoly.sub_algebraMap, isConjRoot_iff_aeval_eq_zero, IsPrimitiveRoot.minpoly_eq_pow_coprime, solvableByRad.isSolvable, IsPurelyInseparable.minpoly_eq, minpoly.degree_le, IsPurelyInseparable.natSepDegree_eq_one, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply_mk, minpoly.natSepDegree_eq_one_iff_eq_X_sub_C_pow, IsNormalClosure.splits, minpoly.two_le_natDegree_iff, minpoly.map_eq_of_isSeparable_of_isPurelyInseparable, minpoly.frobenius_of_isSeparable, charpoly_leftMulMatrix, minpoly.dvd_iff, LinearMap.minpoly_toMatrix', Algebra.adjoin.powerBasis_dim, minpoly.algEquiv_eq, PowerBasis.liftEquiv_symm_apply, ConjRootClass.minpoly_mk, natDegree_minpolyDiv_lt, minpoly.isIntegrallyClosed_eq_field_fractions, AdjoinRoot.Minpoly.coe_toAdjoin, traceForm_dualSubmodule_adjoin, IsIntegrallyClosed.minpoly.unique, minpoly.eq_X_sub_C_of_algebraMap_inj, spectralNorm.spectralNorm_pow_natDegree_eq_prod_roots, LinearMap.minpoly_dvd_charpoly, PowerBasis.trace_gen_eq_nextCoeff_minpoly, minpoly.degree_le_of_ne_zero, isConjRoot_iff_mem_minpoly_rootSet, KummerDedekind.emultiplicity_factors_map_eq_emultiplicity, IsPrimitiveRoot.minpoly_sub_one_eq_cyclotomic_comp, trace_eq_finrank_mul_minpoly_nextCoeff, minpoly.algHom_eq, PowerBasis.degree_minpoly, IntermediateField.exists_finset_of_mem_supr'', Algebra.adjoin.powerBasis'_dim, minpoly.ker_aeval_eq_span_minpoly, IsPrimitiveRoot.minpoly_dvd_expand, minpoly.eq_of_irreducible_of_monic, minpoly.isRadical, minpoly.prime, IsPrimitiveRoot.minpoly_dvd_mod_p, minpoly.aeval, isPurelyInseparable_iff_natSepDegree_eq_one, IsPrimitiveRoot.separable_minpoly_mod, minpoly.eq_of_linearIndependent, LinearMap.hasEigenvalue_zero_tfae, Matrix.minpoly_toLin', IntermediateField.adjoinRootEquivAdjoin_apply_root, AdjoinRoot.Minpoly.coe_toAdjoin_mk_X, IntermediateField.finSepDegree_adjoin_simple_eq_natSepDegree, PowerBasis.quotientEquivQuotientMinpolyMap_symm_apply, minpoly.dvd_map_of_isScalarTower, Module.End.isRoot_of_hasEigenvalue, minpoly.isIntegrallyClosed_dvd_iff, LinearMap.minpoly_toMatrix, minpoly.subsingleton, Algebra.IsUnramifiedAt.not_minpoly_sq_dvd, isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow, minpoly.eq_zero, IsPrimitiveRoot.minpoly_eq_cyclotomic_of_irreducible, IsPrimitiveRoot.subOnePowerBasis_dim, minpoly.aeval_algHom, minpoly.IsIntegrallyClosed.degree_le_of_ne_zero, IsPurelyInseparable.minpoly_natDegree_eq, minpoly.add_algebraMap, Algebra.IsAlgebraic.isNormalClosure_iff, IsConjRoot.aeval_eq_zero, IntermediateField.algHomAdjoinIntegralEquiv_symm_apply_gen, isPurelyInseparable_iff_minpoly_eq_X_pow_sub_C, RingOfIntegers.ZModXQuotSpanEquivQuotSpan_mk_apply, Polynomial.cyclotomic_eq_minpoly_rat, minpoly.min, minpoly.ofSubring, normal_iff, IsPrimitiveRoot.squarefree_minpoly_mod, Field.primitive_element_iff_minpoly_degree_eq, minpoly.dvd_map_of_isScalarTower', PowerBasis.ofGenMemAdjoin'_dim, Polynomial.span_minpoly_eq_annihilator, NumberField.Embeddings.coeff_bdd_of_norm_le, IsIntegral.mem_span_pow, spectralNorm.spectralNorm_eq_norm_coeff_zero_rpow, Algebra.normalizedTrace_minpoly, minpoly.eq_X_sub_C', Field.primitive_element_iff_minpoly_natDegree_eq, coeff_minpolyDiv, IntermediateField.minpoly_eq, minpoly.degree_eq_one_iff, aeval_derivative_mem_differentIdeal, PowerBasis.minpolyGen_eq, IsPurelyInseparable.minpoly_eq_X_pow_sub_C, minpoly.isIntegrallyClosed_dvd, FiniteField.minpoly_frobeniusAlgHom, minpoly.equivAdjoin_toAlgHom, Module.End.hasEigenvalue_iff_isRoot, minpoly_algEquiv_toLinearMap, minpoly.natSepDegree_eq_one_iff_pow_mem, minpoly.zero, minpoly.one, minpoly.neg, normalClosure_eq_iSup_adjoin, IsAdjoinRoot.mkOfAdjoinEqTop_root, IsPurelyInseparable.minpoly_eq_X_sub_C_pow, minpoly.not_isUnit, NumberField.hermiteTheorem.natDegree_le_rankOfDiscrBdd, IsIntegrallyClosed.minpoly_smul, minpolyDiv_spec, PowerBasis.liftEquiv'_apply_coe, minpoly.coe_equivAdjoin, Algebra.adjoin.powerBasis'_minpoly_gen, minpoly.natDegree_le, PowerBasis.ofAdjoinEqTop_dim, AdjoinRoot.minpoly_powerBasis_gen, Module.End.IsSemisimple.minpoly_squarefree, NumberField.Ideal.ramificationIdx_primesOverSpanEquivMonicFactorsMod_symm_apply, Normal.out, minpoly.dvd, FixedPoints.minpoly_eq_minpoly, conductor_mul_differentIdeal, minpoly.eq_iff_aeval_minpoly_eq_zero, KummerDedekind.normalizedFactors_ideal_map_eq_normalizedFactors_min_poly_mk_map, minpoly.natDegree_eq_one_iff, IntermediateField.adjoin_minpoly_coeff_of_exists_primitive_element, IsPrimitiveRoot.pow_isRoot_minpoly, PowerBasis.liftEquiv'_symm_apply_apply, Polynomial.annIdealGenerator_eq_minpoly, minpoly.natSepDegree_eq_one_iff_eq_expand_X_sub_C, Module.Basis.traceDual_powerBasis_eq, minpoly.iterateFrobenius_of_isSeparable, LinearMap.not_hasEigenvalue_zero_tfae, Algebra.IsAlgebraic.range_eval_eq_rootSet_minpoly, minpoly.degree_dvd, linearIndependent_pow, IsPrimitiveRoot.minpoly_eq_pow, NumberField.Embeddings.range_eval_eq_rootSet_minpoly, minpoly.irreducible, minpoly.algebraMap_eq, minpoly.natDegree_pos, PowerBasis.natDegree_minpoly, IsPrimitiveRoot.minpoly_dvd_cyclotomic, NumberField.RingOfIntegers.minpoly_coe, IsAdjoinRootMonic.minpoly_eq, Polynomial.cyclotomic_eq_minpoly, Matrix.minpoly_toLin, AdjoinRoot.minpoly_powerBasis_gen_of_monic, IsGalois.splits, minpoly.ker_eval, minpoly.eq_X_sub_C, IntermediateField.isPurelyInseparable_adjoin_simple_iff_natSepDegree_eq_one, minpoly.map_eq_of_equiv_equiv, Algebra.IsAlgebraic.normalClosure_le_iSup_adjoin, Valuation.coeff_zero_minpoly, trace_adjoinSimpleGen, NumberField.Ideal.primesOverSpanEquivMonicFactorsMod_symm_apply, minpoly.unique', IntermediateField.adjoin.powerBasis_dim, minpoly.two_le_natDegree_subalgebra, minpoly.isIntegrallyClosed_eq_field_fractions', natDegree_minpolyDiv, PowerBasis.liftEquiv_apply_coe, IsPrimitiveRoot.minpoly_dvd_x_pow_sub_one, KummerDedekind.quotMapEquivQuotQuotMap_symm_apply
|