Documentation Verification Report

Field

πŸ“ Source: Mathlib/FieldTheory/Minpoly/Field.lean

Statistics

MetricCount
Definitionsfintype, subtypeProd, rootsOfMinPolyPiType
3
Theoremsadd_algebraMap, aeval_of_isScalarTower, aux_inj_roots_of_min_poly, coeff_zero_eq_zero, coeff_zero_ne_zero, degree_le_of_ne_zero, dvd, dvd_iff, dvd_map_of_isScalarTower, dvd_map_of_isScalarTower', eq_X_sub_C, eq_X_sub_C', eq_iff_aeval_eq_zero, eq_iff_aeval_minpoly_eq_zero, eq_of_irreducible, eq_of_irreducible_of_monic, isRadical, ker_aeval_eq_span_minpoly, map_algebraMap, map_eq_of_equiv_equiv, ne_zero_of_finite, neg, one, prime, root, sub_algebraMap, unique, unique_of_degree_le_degree_minpoly, zero, minpoly_algEquiv_toLinearMap, minpoly_algHom_toLinearMap
31
Total34

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
minpoly_algEquiv_toLinearMap πŸ“–mathematicalIsOfFinOrder
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
minpoly
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.End.instRing
Ring.toAddCommGroup
CommRing.toRing
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.toLinearMap
Polynomial
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.semiring
Polynomial.X
orderOf
DFunLike.coe
RingHom
RingHom.instFunLike
Polynomial.C
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”smulCommClass_self
IsScalarTower.left
minpoly.unique
Polynomial.monic_X_pow_sub_C
LT.lt.ne
IsOfFinOrder.orderOf_pos
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.aeval_sub
map_pow
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.aeval_X
pow_orderOf_eq_one
sub_self
Polynomial.degree_eq_natDegree
Polynomial.Monic.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.degree_X_pow_sub_C
Nat.cast_le
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
not_lt
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Fintype.linearIndependent_iff
LinearIndependent.comp
linearIndependent_algHom_toLinearMap'
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
AlgEquiv.coe_algHom_injective
Subtype.val_injective
Equiv.injective
Finset.sum_congr
Fin.sum_univ_eq_sum_range
Polynomial.aeval_eq_sum_range'
minpoly_algHom_toLinearMap πŸ“–mathematicalIsOfFinOrder
AlgHom
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
AlgHom.End
minpoly
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Algebra.toModule
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.End.instRing
Ring.toAddCommGroup
CommRing.toRing
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.toLinearMap
Polynomial
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.semiring
Polynomial.X
orderOf
DFunLike.coe
RingHom
RingHom.instFunLike
Polynomial.C
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
β€”MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
MonoidHom.coe_coe
orderOf_injective
MulEquiv.injective
orderOf_units
IsOfFinOrder.val_unit
smulCommClass_self
IsScalarTower.left
minpoly_algEquiv_toLinearMap
orderOf_pos_iff
LinearMap.ext

minpoly

Definitions

NameCategoryTheorems
rootsOfMinPolyPiType πŸ“–CompOp
1 mathmath: aux_inj_roots_of_min_poly

Theorems

NameKindAssumesProvesValidatesDepends On
add_algebraMap πŸ“–mathematicalβ€”minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Polynomial.comp
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.X
Polynomial.semiring
Polynomial.C
β€”unique
Polynomial.Monic.comp_X_sub_C
monic
Polynomial.aeval_comp
Polynomial.aeval_sub
Polynomial.aeval_X
Polynomial.aeval_C
add_sub_cancel_right
aeval
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
min
Polynomial.Monic.comp_X_add_C
Polynomial.degree_eq_natDegree
Polynomial.Monic.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.natDegree_comp
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.natDegree_X_sub_C
mul_one
Polynomial.natDegree_X_add_C
ne_zero
eq_zero
IsIntegral.sub
isIntegral_algebraMap
Polynomial.zero_comp
aeval_of_isScalarTower πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommRing.toCommSemiringβ€”Polynomial.evalβ‚‚_eq_zero_of_dvd_of_evalβ‚‚_eq_zero
dvd_map_of_isScalarTower
Polynomial.aeval_map_algebraMap
aux_inj_roots_of_min_poly πŸ“–mathematicalβ€”AlgHom
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
rootsOfMinPolyPiType
β€”IsNoetherianRing.strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Module.Free.of_divisionRing
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
LinearMap.ext_on
Module.Basis.span_eq
DFunLike.ext'_iff
coeff_zero_eq_zero πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.coeff
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”Polynomial.zero_isRoot_of_coeff_zero_eq_zero
root
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
zero
IsDomain.toNontrivial
Polynomial.coeff_X_zero
coeff_zero_ne_zero πŸ“–β€”IsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚„
degree_le_of_ne_zero πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
minpoly
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”min
Polynomial.monic_mul_leadingCoeff_inv
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.aeval_C
MulZeroClass.zero_mul
Polynomial.degree_mul_leadingCoeff_inv
dvd πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
minpoly
β€”IsAlgebraic.isIntegral
Polynomial.modByMonic_eq_zero_iff_dvd
monic
LE.le.not_gt
degree_le_of_ne_zero
Polynomial.aeval_modByMonic_eq_self_of_root
aeval
Polynomial.degree_modByMonic_lt
IsLocalRing.toNontrivial
Field.instIsLocalRing
dvd_iff πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
minpoly
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
aeval
MulZeroClass.zero_mul
dvd
dvd_map_of_isScalarTower πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
minpoly
Polynomial.map
algebraMap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”dvd
Polynomial.aeval_map_algebraMap
aeval
dvd_map_of_isScalarTower' πŸ“–mathematicalβ€”Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
minpoly
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Ring.toSemiring
RingHom.instFunLike
algebraMap
Polynomial.map
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommRing.toRing
β€”dvd
Polynomial.map_aeval_eq_aeval_map
IsScalarTower.algebraMap_eq
aeval
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
eq_X_sub_C πŸ“–mathematicalβ€”minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
RingHom.instFunLike
algebraMap
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommRing.toCommSemiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.X
Polynomial.semiring
Polynomial.C
β€”RingHom.injective
DivisionRing.isSimpleRing
eq_X_sub_C' πŸ“–mathematicalβ€”minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Algebra.id
CommRing.toCommSemiring
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
Polynomial.instSub
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
β€”eq_X_sub_C
IsLocalRing.toNontrivial
Field.instIsLocalRing
eq_iff_aeval_eq_zero πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.Monic
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
AlgHom
CommSemiring.toSemiring
Semifield.toCommSemiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”aeval
eq_of_irreducible_of_monic
eq_iff_aeval_minpoly_eq_zero πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
minpoly
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”eq_iff_aeval_eq_zero
irreducible
instIsDomain
monic
eq_of_irreducible πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
Semifield.toCommSemiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Polynomial.instMul
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
Polynomial.leadingCoeff
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Polynomial.leadingCoeff_ne_zero
Irreducible.ne_zero
eq_of_irreducible_of_monic
Associated.irreducible
Polynomial.C_mul
inv_mul_cancelβ‚€
Polynomial.C_1
mul_inv_cancelβ‚€
Polynomial.aeval_mul
MulZeroClass.zero_mul
Polynomial.Monic.eq_1
Polynomial.leadingCoeff_mul
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.leadingCoeff_C
eq_of_irreducible_of_monic πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
Semifield.toCommSemiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Polynomial.Monic
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”dvd
Polynomial.eq_of_monic_of_associated
monic
Associated.mul_left
associated_one_iff_isUnit
Irreducible.isUnit_or_isUnit
not_isUnit
mul_one
isRadical πŸ“–mathematicalβ€”IsRadical
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
minpoly
β€”dvd_iff
IsReduced.eq_zero
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
ker_aeval_eq_span_minpoly πŸ“–mathematicalβ€”RingHom.ker
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
AlgHom
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.aeval
Submodule.span
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.commRing
Semiring.toModule
Set
Set.instSingletonSet
minpoly
β€”Ideal.ext
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_algebraMap πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Subsemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Semiring.toNonAssocSemiring
Polynomial.semiring
SetLike.instMembership
Subsemiring.instSetLike
Polynomial.lifts
Semifield.toCommSemiring
algebraMap
minpoly
Polynomial.mapβ€”Polynomial.eq_of_monic_of_dvd_of_natDegree_le
monic
IsIntegral.tower_top
Function.Injective.monic_map_iff
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
dvd
Polynomial.aeval_map_algebraMap
aeval
Polynomial.lifts_and_natDegree_eq_and_monic
Polynomial.natDegree_map
Polynomial.natDegree_le_of_dvd
IsDomain.to_noZeroDivisors
instIsDomain
IsScalarTower.right
IsScalarTower.algebraMap_eq
Polynomial.coe_mapRingHom
Polynomial.mapRingHom_comp
RingHom.comp_apply
Polynomial.Monic.ne_zero
map_eq_of_equiv_equiv πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
algebraMap
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Polynomial.map
minpoly
DFunLike.coe
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
eq_of_irreducible_of_monic
IsDomain.toNontrivial
Polynomial.mapEquiv_apply
MulEquiv.irreducible_iff
RingEquivClass.toMulEquivClass
irreducible
Algebra.IsIntegral.isIntegral
aeval
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
Polynomial.map_aeval_eq_aeval_map
Polynomial.Monic.map
monic
ne_zero_of_finite πŸ“–β€”β€”β€”β€”ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsIntegral.of_finite
neg πŸ“–mathematicalβ€”minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instMul
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instNeg
DivisionRing.toRing
Field.toDivisionRing
Polynomial.instOne
Polynomial.natDegree
Polynomial.comp
Polynomial.X
β€”unique
Polynomial.Monic.neg_one_pow_natDegree_mul_comp_neg_X
monic
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Polynomial.aeval_neg
map_one
MonoidHomClass.toOneHomClass
Polynomial.aeval_comp
Polynomial.aeval_X
neg_neg
aeval
MulZeroClass.mul_zero
min
Polynomial.degree_mul
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.degree_pow
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.degree_neg
Polynomial.degree_one
nsmul_zero
Polynomial.degree_comp_neg_X
zero_add
eq_zero
Iff.not
IsIntegral.neg_iff
Polynomial.zero_comp
pow_zero
one πŸ“–mathematicalβ€”minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.X
Polynomial.instOne
β€”sub_eq_add_neg
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
eq_X_sub_C
prime πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Prime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
Polynomial.commSemiring
Semifield.toCommSemiring
Field.toSemifield
minpoly
β€”ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
not_isUnit
IsDomain.toNontrivial
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
aeval
MulZeroClass.zero_mul
IsDomain.to_noZeroDivisors
dvd
root πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.IsRoot
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
RingHom.instFunLike
algebraMap
β€”Polynomial.eq_of_monic_of_associated
monic
Polynomial.monic_X_sub_C
associated_of_dvd_dvd
Polynomial.instIsLeftCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
instIsDomain
Irreducible.dvd_symm
Polynomial.irreducible_X_sub_C
irreducible
Polynomial.dvd_iff_isRoot
aeval
sub_eq_zero
Polynomial.aeval_C
Polynomial.aeval_X
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
sub_algebraMap πŸ“–mathematicalβ€”minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Polynomial.comp
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.instAdd
Polynomial.X
Polynomial.semiring
Polynomial.C
β€”sub_eq_add_neg
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
neg_neg
add_algebraMap
unique πŸ“–mathematicalPolynomial.Monic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”eq_of_sub_eq_zero
LE.le.not_gt
degree_le_of_ne_zero
Polynomial.aeval_sub
aeval
sub_self
Polynomial.degree_sub_lt
le_antisymm
min
monic
ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.Monic.leadingCoeff
unique_of_degree_le_degree_minpoly πŸ“–β€”Polynomial.Monic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
minpoly
β€”β€”unique
LE.le.trans
min
zero πŸ“–mathematicalβ€”minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Polynomial.X
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
sub_eq_add_neg
neg_zero
add_zero
eq_X_sub_C

minpoly.AlgHom

Definitions

NameCategoryTheorems
fintype πŸ“–CompOp
11 mathmath: sum_smul_minpolyDiv_eq_X_pow, finrank_algHom, Algebra.norm_eq_prod_embeddings, Algebra.traceMatrix_eq_embeddingsMatrix_mul_trans, sum_embeddings_eq_finrank_mul, AlgHom.card, AlgHom.card_le, trace_eq_sum_embeddings, AlgHom.card_of_splits, Algebra.prod_embeddings_eq_finrank_pow, FiniteField.card_algHom_of_finrank_dvd

minpoly.Fintype

Definitions

NameCategoryTheorems
subtypeProd πŸ“–CompOpβ€”

---

← Back to Index