Documentation Verification Report

IsConjRoot

πŸ“ Source: Mathlib/FieldTheory/Minpoly/IsConjRoot.lean

Statistics

MetricCount
DefinitionsIsConjRoot, decidable, setoid
3
Theoremsadd_algebraMap, aeval_eq_zero, comm, eq_algebraMap, eq_algebraMap_of_injective, eq_zero, eq_zero_of_injective, exists_algEquiv, instIsEquiv, isIntegral, isIntegral_iff, ne_zero, ne_zero_of_injective, neg, of_isScalarTower, refl, sub_algebraMap, trans, isConjRoot_algHom_iff, isConjRoot_algHom_iff_of_injective, isConjRoot_def, isConjRoot_iff_aeval_eq_zero, isConjRoot_iff_eq_algebraMap, isConjRoot_iff_eq_algebraMap', isConjRoot_iff_eq_algebraMap_of_injective, isConjRoot_iff_exists_algEquiv, isConjRoot_iff_mem_minpoly_aroots, isConjRoot_iff_mem_minpoly_rootSet, isConjRoot_iff_orbitRel, isConjRoot_of_aeval_eq_zero, isConjRoot_of_algEquiv, isConjRoot_of_algEquiv', isConjRoot_of_algEquivβ‚‚, isConjRoot_zero_iff_eq_zero, isConjRoot_zero_iff_eq_zero', isConjRoot_zero_iff_eq_zero_of_injective, notMem_iff_exists_ne_and_isConjRoot
37
Total40

IsConjRoot

Definitions

NameCategoryTheorems
decidable πŸ“–CompOpβ€”
setoid πŸ“–CompOp
1 mathmath: ConjRootClass.mk_def

Theorems

NameKindAssumesProvesValidatesDepends On
add_algebraMap πŸ“–mathematicalIsConjRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”isConjRoot_def
minpoly.add_algebraMap
aeval_eq_zero πŸ“–mathematicalIsConjRootDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”minpoly.aeval
comm πŸ“–mathematicalβ€”IsConjRootβ€”symm
eq_algebraMap πŸ“–β€”IsConjRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”β€”eq_algebraMap_of_injective
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
RingHom.injective
DivisionRing.isSimpleRing
IsDomain.toNontrivial
eq_algebraMap_of_injective πŸ“–β€”IsConjRoot
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”β€”Polynomial.mem_aroots
IsDomain.toNontrivial
minpoly.aeval
eq_1
Polynomial.aroots_X_sub_C
eq_zero πŸ“–β€”IsConjRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”eq_zero_of_injective
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
RingHom.injective
DivisionRing.isSimpleRing
IsDomain.toNontrivial
eq_zero_of_injective πŸ“–β€”IsConjRoot
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”β€”eq_algebraMap_of_injective
RingHom.map_zero
exists_algEquiv πŸ“–mathematicalIsConjRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
β€”IntermediateField.exists_algHom_of_splits_of_aeval
normal_iff
minpoly.aeval
AlgHom.normal_bijective
IsScalarTower.right
instIsEquiv πŸ“–mathematicalβ€”IsEquiv
IsConjRoot
β€”Quotient.instIsEquivEquiv
isIntegral πŸ“–β€”IsIntegral
IsConjRoot
β€”β€”minpoly.monic
minpoly.aeval
isIntegral_iff πŸ“–mathematicalIsConjRootIsIntegralβ€”isIntegral
symm
ne_zero πŸ“–β€”IsConjRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
β€”β€”ne_zero_of_injective
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
RingHom.injective
DivisionRing.isSimpleRing
IsDomain.toNontrivial
ne_zero_of_injective πŸ“–β€”IsConjRoot
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”β€”eq_zero_of_injective
symm
neg πŸ“–mathematicalIsConjRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”isConjRoot_def
minpoly.neg
of_isScalarTower πŸ“–β€”IsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
IsConjRoot
β€”β€”isConjRoot_of_aeval_eq_zero
minpoly.aeval_of_isScalarTower
aeval_eq_zero
refl πŸ“–mathematicalβ€”IsConjRootβ€”β€”
sub_algebraMap πŸ“–mathematicalIsConjRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”sub_eq_add_neg
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
add_algebraMap
trans πŸ“–β€”IsConjRootβ€”β€”β€”

(root)

Definitions

NameCategoryTheorems
IsConjRoot πŸ“–MathDef
23 mathmath: IsConjRoot.instIsEquiv, isConjRoot_iff_mem_minpoly_aroots, isConjRoot_of_algEquiv, isConjRoot_iff_exists_algEquiv, isConjRoot_algHom_iff, isConjRoot_def, isConjRoot_of_algEquivβ‚‚, isConjRoot_iff_aeval_eq_zero, isConjRoot_zero_iff_eq_zero_of_injective, isConjRoot_iff_eq_algebraMap_of_injective, isConjRoot_iff_eq_algebraMap, isConjRoot_iff_mem_minpoly_rootSet, isConjRoot_of_aeval_eq_zero, isConjRoot_of_algEquiv', isConjRoot_algHom_iff_of_injective, isConjRoot_zero_iff_eq_zero, isConjRoot_zero_iff_eq_zero', isConjRoot_iff_orbitRel, IsConjRoot.refl, IsConjRoot.comm, ConjRootClass.mk_eq_mk, notMem_iff_exists_ne_and_isConjRoot, isConjRoot_iff_eq_algebraMap'

Theorems

NameKindAssumesProvesValidatesDepends On
isConjRoot_algHom_iff πŸ“–mathematicalβ€”IsConjRoot
DFunLike.coe
AlgHom
CommRing.toCommSemiring
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Ring.toSemiring
AlgHom.funLike
DivisionRing.toRing
β€”isConjRoot_algHom_iff_of_injective
RingHom.injective
DivisionRing.isSimpleRing
isConjRoot_algHom_iff_of_injective πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
AlgHom.funLike
IsConjRootβ€”isConjRoot_def
minpoly.algHom_eq
isConjRoot_def πŸ“–mathematicalβ€”IsConjRoot
minpoly
β€”β€”
isConjRoot_iff_aeval_eq_zero πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsConjRoot
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
β€”IsConjRoot.aeval_eq_zero
isConjRoot_of_aeval_eq_zero
isConjRoot_iff_eq_algebraMap πŸ“–mathematicalβ€”IsConjRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”isConjRoot_iff_eq_algebraMap_of_injective
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
RingHom.injective
DivisionRing.isSimpleRing
IsDomain.toNontrivial
isConjRoot_iff_eq_algebraMap' πŸ“–mathematicalβ€”IsConjRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
β€”isConjRoot_iff_eq_algebraMap_of_injective
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
RingHom.injective
DivisionRing.isSimpleRing
IsDomain.toNontrivial
isConjRoot_iff_eq_algebraMap_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
IsConjRoot
CommRing.toRing
β€”IsConjRoot.eq_algebraMap_of_injective
isConjRoot_iff_exists_algEquiv πŸ“–mathematicalβ€”IsConjRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
β€”IsConjRoot.exists_algEquiv
IsConjRoot.symm
isConjRoot_of_algEquiv
isConjRoot_iff_mem_minpoly_aroots πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
IsConjRoot
Multiset
Multiset.instMembership
Polynomial.aroots
minpoly
β€”Polynomial.mem_aroots
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
isConjRoot_iff_aeval_eq_zero
minpoly.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
isConjRoot_iff_mem_minpoly_rootSet πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
IsConjRoot
Set
Set.instMembership
Polynomial.rootSet
minpoly
β€”isConjRoot_iff_mem_minpoly_aroots
DivisionRing.isSimpleRing
IsDomain.toNontrivial
Polynomial.eval_map_algebraMap
isConjRoot_iff_orbitRel πŸ“–mathematicalβ€”IsConjRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
MulAction.orbitRel
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
AlgEquiv.applyMulSemiringAction
β€”isConjRoot_iff_exists_algEquiv
isConjRoot_of_aeval_eq_zero πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
Ring.toSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
IsConjRootβ€”minpoly.eq_of_irreducible_of_monic
IsDomain.toNontrivial
minpoly.irreducible
instIsDomain
minpoly.monic
isConjRoot_of_algEquiv πŸ“–mathematicalβ€”IsConjRoot
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
Ring.toSemiring
AlgEquiv.instFunLike
β€”minpoly.algEquiv_eq
isConjRoot_of_algEquiv' πŸ“–mathematicalβ€”IsConjRoot
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
Ring.toSemiring
AlgEquiv.instFunLike
β€”minpoly.algEquiv_eq
isConjRoot_of_algEquivβ‚‚ πŸ“–mathematicalβ€”IsConjRoot
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
Ring.toSemiring
AlgEquiv.instFunLike
β€”isConjRoot_def
minpoly.algEquiv_eq
isConjRoot_zero_iff_eq_zero πŸ“–mathematicalβ€”IsConjRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”isConjRoot_zero_iff_eq_zero_of_injective
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
RingHom.injective
DivisionRing.isSimpleRing
IsDomain.toNontrivial
isConjRoot_zero_iff_eq_zero' πŸ“–mathematicalβ€”IsConjRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”isConjRoot_zero_iff_eq_zero_of_injective
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
RingHom.injective
DivisionRing.isSimpleRing
IsDomain.toNontrivial
isConjRoot_zero_iff_eq_zero_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
IsConjRoot
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”IsConjRoot.eq_zero_of_injective
notMem_iff_exists_ne_and_isConjRoot πŸ“–mathematicalIsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
Subalgebra
SetLike.instMembership
Subalgebra.instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IsConjRoot
β€”instIsDomain
minpoly.two_le_natDegree_iff
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsSeparable.isIntegral
Polynomial.card_rootSet_eq_natDegree
Fintype.one_lt_card_iff_nontrivial
Polynomial.mem_rootSet
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
minpoly.ne_zero
minpoly.aeval
nontrivial_iff_exists_ne
Subtype.coe_ne_coe
isConjRoot_iff_mem_minpoly_rootSet

---

← Back to Index