Documentation Verification Report

IsIntegrallyClosed

πŸ“ Source: Mathlib/FieldTheory/Minpoly/IsIntegrallyClosed.lean

Statistics

MetricCount
DefinitionspowerBasis', IsIntegrallyClosed, ofAdjoinEqTop', ofGenMemAdjoin', equivAdjoin, instAlgebraSubtypeMemSubringSubalgebraIntegralClosure, instSMulSubtypeMemSubringSubalgebraIntegralClosure
7
TheoremspowerBasis'_dim, powerBasis'_gen, unique, minpoly_smul, ofAdjoinEqTop'_dim, ofAdjoinEqTop'_gen, ofGenMemAdjoin'_dim, ofGenMemAdjoin'_gen, degree_le_of_ne_zero, isIntegral_iff_isUnit_leadingCoeff, isIntegral_iff_leadingCoeff_dvd, unique_of_degree_le_degree_minpoly, injective, coe_equivAdjoin, equivAdjoin_toAlgHom, instIsScalarTowerSubtypeMemSubringSubalgebraIntegralClosure, isIntegrallyClosed_dvd, isIntegrallyClosed_dvd_iff, isIntegrallyClosed_eq_field_fractions, isIntegrallyClosed_eq_field_fractions', ker_eval, ofSubring, prime_of_isIntegrallyClosed
23
Total30

Algebra.adjoin

Definitions

NameCategoryTheorems
powerBasis' πŸ“–CompOp
3 mathmath: powerBasis'_dim, powerBasis'_minpoly_gen, powerBasis'_gen

Theorems

NameKindAssumesProvesValidatesDepends On
powerBasis'_dim πŸ“–mathematicalIsIntegral
CommRing.toRing
PowerBasis.dim
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
Subalgebra.toRing
Subalgebra.algebra
powerBasis'
Polynomial.natDegree
minpoly
β€”β€”
powerBasis'_gen πŸ“–mathematicalIsIntegral
CommRing.toRing
PowerBasis.gen
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
Subalgebra.toRing
Subalgebra.algebra
powerBasis'
Set.instMembership
SetLike.coe
SetLike.mem_coe
Algebra.subset_adjoin
Set.mem_singleton
β€”SetLike.mem_coe
Algebra.subset_adjoin
Set.mem_singleton
powerBasis'.eq_1
PowerBasis.map_gen
AdjoinRoot.powerBasis'_gen
minpoly.equivAdjoin.eq_1
AlgEquiv.ofBijective_apply
AdjoinRoot.Minpoly.toAdjoin.eq_1
AdjoinRoot.liftAlgHom_root

IsIntegrallyClosed

Theorems

NameKindAssumesProvesValidatesDepends On
minpoly_smul πŸ“–mathematicalIsIntegral
CommRing.toRing
minpoly
Algebra.toSMul
CommRing.toCommSemiring
CommSemiring.toSemiring
Polynomial.scaleRoots
β€”FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
Polynomial.map_injective
FaithfulSMul.algebraMap_injective
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
minpoly.isIntegrallyClosed_eq_field_fractions
Localization.isLocalization
FractionRing.instNontrivial
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.left
IsIntegral.smul
Polynomial.map_scaleRoots
Algebra.smul_def
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
IsScalarTower.algebraMap_apply
Polynomial.eq_of_monic_of_associated
minpoly.monic
IsIntegral.mul
isIntegral_algebraMap
IsIntegral.tower_top
IsIntegral.map
AlgHom.algHomClass
associated_of_dvd_dvd
Polynomial.instIsLeftCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
IsCancelMulZero.toIsLeftCancelMulZero
instIsDomain
minpoly.dvd
Polynomial.scaleRoots_aeval_eq_zero
minpoly.aeval
IsDomain.to_noZeroDivisors
Polynomial.scaleRoots_dvd_iff
Polynomial.scaleRoots_mul
mul_inv_cancelβ‚€
Polynomial.scaleRoots_one
inv_mul_cancel_leftβ‚€
RingHomClass.toMonoidWithZeroHomClass
map_invβ‚€

IsIntegrallyClosed.minpoly

Theorems

NameKindAssumesProvesValidatesDepends On
unique πŸ“–mathematicalPolynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
minpoly
CommRing.toRing
β€”eq_of_sub_eq_zero
LE.le.not_gt
minpoly.IsIntegrallyClosed.degree_le_of_ne_zero
Polynomial.aeval_sub
minpoly.aeval
sub_self
Polynomial.degree_sub_lt
le_antisymm
minpoly.min
minpoly.monic
minpoly.ne_zero
IsDomain.toNontrivial
Polynomial.Monic.leadingCoeff

PowerBasis

Definitions

NameCategoryTheorems
ofAdjoinEqTop' πŸ“–CompOp
4 mathmath: ofAdjoinEqTop'_dim, ofGenMemAdjoin'_dim, ofAdjoinEqTop'_gen, ofGenMemAdjoin'_gen
ofGenMemAdjoin' πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ofAdjoinEqTop'_dim πŸ“–mathematicalIsIntegral
CommRing.toRing
Algebra.adjoin
CommRing.toCommSemiring
CommSemiring.toSemiring
Set
Set.instSingletonSet
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
dim
ofAdjoinEqTop'
Polynomial.natDegree
minpoly
β€”β€”
ofAdjoinEqTop'_gen πŸ“–mathematicalIsIntegral
CommRing.toRing
Algebra.adjoin
CommRing.toCommSemiring
CommSemiring.toSemiring
Set
Set.instSingletonSet
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
gen
ofAdjoinEqTop'
β€”SetLike.mem_coe
Algebra.subset_adjoin
Set.mem_singleton
Algebra.adjoin.powerBasis'_gen
ofGenMemAdjoin'_dim πŸ“–mathematicalIsIntegral
CommRing.toRing
Algebra.adjoin
CommRing.toCommSemiring
CommSemiring.toSemiring
Set
Set.instSingletonSet
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
dim
ofAdjoinEqTop'
Polynomial.natDegree
minpoly
β€”ofAdjoinEqTop'_dim
ofGenMemAdjoin'_gen πŸ“–mathematicalIsIntegral
CommRing.toRing
Algebra.adjoin
CommRing.toCommSemiring
CommSemiring.toSemiring
Set
Set.instSingletonSet
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
gen
ofAdjoinEqTop'
β€”ofAdjoinEqTop'_gen

(root)

Definitions

NameCategoryTheorems
IsIntegrallyClosed πŸ“–MathDef
27 mathmath: integralClosure.isIntegrallyClosedOfFiniteExtension, Valuation.Integers.isIntegrallyClosed, IsDedekindDomainDvr.isIntegrallyClosed, Valuation.Integers.integrallyClosed, Valuation.Integers.isIntegrallyClosed_integers, instIsIntegrallyClosedSubtypeMemValuationSubring, IsIntegrallyClosed.of_isIntegrallyClosed_of_isIntegrallyClosedIn, FunctionField.ringOfIntegers.instIsIntegrallyClosedSubtypeMemSubalgebraPolynomial, IsIntegrallyClosed.integralClosure_eq_bot_iff, tfae_of_isNoetherianRing_of_isLocalRing_of_isDomain, Field.instIsIntegrallyClosed, instIsIntegrallyClosedPolynomialOfIsDomain, Ring.instIsIntegrallyClosedNormalClosure, IsIntegrallyClosed.of_equiv, IsDedekindDomainInv.integrallyClosed, GCDMonoid.toIsIntegrallyClosed, IsDiscreteValuationRing.TFAE, isIntegrallyClosed_iff_isIntegrallyClosedIn, NumberField.RingOfIntegers.instIsIntegrallyClosed, isIntegrallyClosed_iff, Polynomial.isIntegrallyClosed_iff', Subring.isIntegrallyClosed_iff, UniqueFactorizationMonoid.instIsIntegrallyClosed, IsIntegrallyClosed.of_isIntegrallyClosedIn, isIntegrallyClosed_iff_isIntegralClosure, isIntegrallyClosed_of_isLocalization, instIsIntegrallyClosedSubtypeMemSubring

minpoly

Definitions

NameCategoryTheorems
equivAdjoin πŸ“–CompOp
2 mathmath: equivAdjoin_toAlgHom, coe_equivAdjoin
instAlgebraSubtypeMemSubringSubalgebraIntegralClosure πŸ“–CompOp
1 mathmath: ofSubring
instSMulSubtypeMemSubringSubalgebraIntegralClosure πŸ“–CompOp
1 mathmath: instIsScalarTowerSubtypeMemSubringSubalgebraIntegralClosure

Theorems

NameKindAssumesProvesValidatesDepends On
coe_equivAdjoin πŸ“–mathematicalIsIntegral
CommRing.toRing
DFunLike.coe
AlgEquiv
AdjoinRoot
minpoly
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
AdjoinRoot.instCommRing
Subalgebra.toSemiring
AdjoinRoot.instAlgebra
Algebra.id
Subalgebra.algebra
AlgEquiv.instFunLike
equivAdjoin
AlgHom
AlgHom.funLike
AdjoinRoot.Minpoly.toAdjoin
β€”β€”
equivAdjoin_toAlgHom πŸ“–mathematicalIsIntegral
CommRing.toRing
AlgHomClass.toAlgHom
AdjoinRoot
minpoly
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
AdjoinRoot.instCommRing
Subalgebra.toSemiring
AdjoinRoot.instAlgebra
Algebra.id
Subalgebra.algebra
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
equivAdjoin
AdjoinRoot.Minpoly.toAdjoin
β€”AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
instIsScalarTowerSubtypeMemSubringSubalgebraIntegralClosure πŸ“–mathematicalβ€”IsScalarTower
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
Subalgebra
CommRing.toCommSemiring
Subring.toCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommSemiring.toSemiring
Algebra.ofSubring
Subalgebra.instSetLike
integralClosure
instSMulSubtypeMemSubringSubalgebraIntegralClosure
Subalgebra.instSMulSubtypeMem
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
Algebra.id
Subring.instSMulSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”IsScalarTower.subalgebra'
IsScalarTower.right
SubringClass.toSubsemiringClass
Subring.instSubringClass
isIntegrallyClosed_dvd πŸ“–mathematicalIsIntegral
CommRing.toRing
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
Polynomial.commRing
minpoly
β€”FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
Polynomial.map_modByMonic
monic
Polynomial.modByMonic_eq_sub_mul_div
Polynomial.Monic.map
dvd_sub
dvd
Polynomial.map_aeval_eq_aeval_map
IsScalarTower.algebraMap_eq
FractionRing.instIsScalarTower
IsScalarTower.right
OreLocalization.instIsScalarTower
IsScalarTower.left
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
dvd_mul_of_dvd_left
isIntegrallyClosed_eq_field_fractions
Localization.isLocalization
FractionRing.instNontrivial
dvd_refl
Polynomial.modByMonic_eq_zero_iff_dvd
Polynomial.eq_zero_of_dvd_of_degree_lt
IsDomain.to_noZeroDivisors
Polynomial.map_dvd_map
IsFractionRing.injective
Polynomial.degree_modByMonic_lt
isIntegrallyClosed_dvd_iff πŸ“–mathematicalIsIntegral
CommRing.toRing
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
Polynomial.commRing
minpoly
β€”isIntegrallyClosed_dvd
Polynomial.aeval_eq_zero_of_dvd_aeval_eq_zero
aeval
isIntegrallyClosed_eq_field_fractions πŸ“–mathematicalIsIntegral
CommRing.toRing
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
algebraMap
Polynomial.map
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”eq_of_irreducible_of_monic
Polynomial.Monic.irreducible_iff_irreducible_map_fraction_map
monic
irreducible
Polynomial.aeval_map_algebraMap
Polynomial.aeval_algebraMap_apply
aeval
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.Monic.map
isIntegrallyClosed_eq_field_fractions' πŸ“–mathematicalIsIntegral
CommRing.toRing
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.map
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
algebraMap
β€”isIntegrallyClosed_eq_field_fractions
FractionRing.instNontrivial
IsDomain.toNontrivial
OreLocalization.instIsScalarTower
IsScalarTower.right
algebraMap_eq
IsFractionRing.injective
Localization.isLocalization
ker_eval πŸ“–mathematicalIsIntegral
CommRing.toRing
RingHom.ker
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
RingHom.instRingHomClass
AlgHom.toRingHom
Polynomial.algebraOfAlgebra
Algebra.id
Polynomial.aeval
Ideal.span
Set
Set.instSingletonSet
minpoly
β€”Ideal.ext
RingHom.instRingHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
isIntegrallyClosed_dvd_iff
ofSubring πŸ“–mathematicalβ€”Polynomial.map
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
Subring.instSubringClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
algebraMap
Algebra.ofSubring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.id
CommRing.toCommSemiring
minpoly
Subalgebra
Subring.toCommRing
Subalgebra.instSetLike
integralClosure
Subalgebra.toRing
instAlgebraSubtypeMemSubringSubalgebraIntegralClosure
β€”SubringClass.toSubsemiringClass
Subring.instSubringClass
isIntegrallyClosed_eq_field_fractions
Subring.instIsDomainSubtypeMem
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
Subring.instIsScalarTowerSubtypeMem
IsScalarTower.left
instIsScalarTowerSubtypeMemSubringSubalgebraIntegralClosure
instIsDomainSubtypeMemSubalgebraIntegralClosure
IsIntegralClosure.isIntegral
integralClosure.isIntegralClosure
prime_of_isIntegrallyClosed πŸ“–mathematicalIsIntegral
CommRing.toRing
Prime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommSemiring.toCommMonoidWithZero
Polynomial.commSemiring
minpoly
β€”Polynomial.Monic.ne_zero
IsDomain.toNontrivial
monic
ne_of_lt
degree_pos
Polynomial.degree_eq_zero_of_isUnit
IsDomain.to_noZeroDivisors
isIntegrallyClosed_dvd_iff
eq_zero_of_ne_zero_of_mul_left_eq_zero
Polynomial.aeval_mul

minpoly.IsIntegrallyClosed

Theorems

NameKindAssumesProvesValidatesDepends On
degree_le_of_ne_zero πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
minpoly
CommRing.toRing
β€”Polynomial.degree_eq_natDegree
minpoly.ne_zero
IsDomain.toNontrivial
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
Polynomial.natDegree_le_of_dvd
IsDomain.to_noZeroDivisors
minpoly.isIntegrallyClosed_dvd_iff
isIntegral_iff_isUnit_leadingCoeff πŸ“–mathematicalIrreducible
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
DFunLike.coe
AlgHom
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsIntegral
CommRing.toRing
IsUnit
Polynomial.leadingCoeff
β€”minpoly.isIntegrallyClosed_dvd
Polynomial.leadingCoeff_mul
IsDomain.to_noZeroDivisors
minpoly.monic
one_mul
IsUnit.map
MonoidHom.instMonoidHomClass
of_irreducible_mul
minpoly.not_isUnit
IsDomain.toNontrivial
smul_smul
IsUnit.val_inv_mul
one_smul
IsIntegral.smul
IsScalarTower.left
isIntegral_leadingCoeff_smul
isIntegral_iff_leadingCoeff_dvd πŸ“–mathematicalDFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
IsIntegral
CommRing.toRing
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
Polynomial.commRing
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Polynomial.leadingCoeff
β€”minpoly.isIntegrallyClosed_dvd
WithBot.le_of_add_le_add_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Polynomial.degree_ne_bot
minpoly.ne_zero
IsDomain.toNontrivial
Polynomial.degree_mul
IsDomain.to_noZeroDivisors
add_zero
minpoly.monic
minpoly.aeval
Polynomial.degree_le_zero_iff
Polynomial.leadingCoeff_mul
Polynomial.Monic.leadingCoeff
Polynomial.leadingCoeff_C
one_mul
mul_comm
minpoly.ne_zero_iff
IsIntegrallyClosed.minpoly.unique
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.aeval_C
Module.IsTorsionFree.to_faithfulSMul
Polynomial.degree_C_mul
right_ne_zero_of_mul
unique_of_degree_le_degree_minpoly πŸ“–β€”Polynomial.Monic
CommSemiring.toSemiring
CommRing.toCommSemiring
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
minpoly
CommRing.toRing
β€”β€”IsIntegrallyClosed.minpoly.unique
LE.le.trans
minpoly.min

minpoly.ToAdjoin

Theorems

NameKindAssumesProvesValidatesDepends On
injective πŸ“–mathematicalIsIntegral
CommRing.toRing
AdjoinRoot
minpoly
Subalgebra
CommRing.toCommSemiring
CommSemiring.toSemiring
SetLike.instMembership
Subalgebra.instSetLike
Algebra.adjoin
Set
Set.instSingletonSet
DFunLike.coe
AlgHom
AdjoinRoot.instCommRing
Subalgebra.toSemiring
AdjoinRoot.instAlgebra
Algebra.id
Subalgebra.algebra
AlgHom.funLike
AdjoinRoot.Minpoly.toAdjoin
β€”injective_iff_map_eq_zero
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
AdjoinRoot.mk_surjective
Algebra.self_mem_adjoin_singleton
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
Subalgebra.instSubsemiringClass
Polynomial.coe_aeval_mk_apply
minpoly.isIntegrallyClosed_dvd_iff

---

← Back to Index