Documentation Verification Report

Basic

📁 Source: Mathlib/FieldTheory/Normal/Basic.lean

Statistics

MetricCount
DefinitionsliftNormal, liftNormal
2
TheoremsliftNormal_commutes, restrictNormalHom_surjective, restrict_liftNormal, fieldRange_of_normal, liftNormal_commutes, restrict_liftNormal, normal, normal_iInf, normal_iSup, normal_inf, normal_sup, splits_of_mem_adjoin, exists_isSplittingField, minpoly_eq_iff_mem_orbit, of_isSplittingField, instNormal, isSolvable_of_isScalarTower, exists_algEquiv_of_root, exists_algEquiv_of_root'
19
Total21

AlgEquiv

Definitions

NameCategoryTheorems
liftNormal 📖CompOp
3 mathmath: restrict_liftNormal, InfiniteGalois.toAlgEquivAux_eq_liftNormal, liftNormal_commutes

Theorems

NameKindAssumesProvesValidatesDepends On
liftNormal_commutes 📖mathematicalDFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instFunLike
liftNormal
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
AlgHom.liftNormal_commutes
restrictNormalHom_surjective 📖mathematicalAlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
aut
MonoidHom.instFunLike
restrictNormalHom
restrict_liftNormal
restrict_liftNormal 📖mathematicalrestrictNormal
liftNormal
ext
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
restrictNormal_commutes
liftNormal_commutes

AlgHom

Definitions

NameCategoryTheorems
liftNormal 📖CompOp
2 mathmath: liftNormal_commutes, restrict_liftNormal

Theorems

NameKindAssumesProvesValidatesDepends On
fieldRange_of_normal 📖mathematicalfieldRange
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
IsScalarTower.right
IntermediateField.isScalarTower_mid'
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
DFunLike.ext_iff
restrictNormal_commutes
map_fieldRange
AlgEquiv.fieldRange_eq_top
fieldRange_eq_map
IntermediateField.fieldRange_val
liftNormal_commutes 📖mathematicalDFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
funLike
liftNormal
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
commutes
restrict_liftNormal 📖mathematicalrestrictNormal
liftNormal
ext
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
restrictNormal_commutes
liftNormal_commutes

Algebra.IsQuadraticExtension

Theorems

NameKindAssumesProvesValidatesDepends On
normal 📖mathematicalNormalcommRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.IsAlgebraic.of_finite
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Algebra.instFiniteOfIsQuadraticExtension
Module.Projective.of_free
toFree
le_iff_lt_or_eq
minpoly.natDegree_le
finrank_eq_two
Polynomial.Splits.of_natDegree_le_one
LE.le.trans
Polynomial.natDegree_map_le
Polynomial.Splits.of_natDegree_eq_two
Polynomial.natDegree_map
DivisionRing.isSimpleRing
Polynomial.eval_map_algebraMap
minpoly.aeval

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
normal_iInf 📖mathematicalNormal
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
IsScalarTower.left
iInf_le
Algebra.IsAlgebraic.of_injective
RingHom.injective
DivisionRing.isSimpleRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
Normal.toIsAlgebraic
minpoly.algHom_eq
Normal.splits'
instIsDomain
splits_iff_mem
Polynomial.Splits.of_isScalarTower
isScalarTower_mid'
normal_iSup 📖mathematicalNormal
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
IsScalarTower.left
isAlgebraic_iSup
Normal.toIsAlgebraic
instIsDomain
exists_finset_of_mem_supr''
Normal.of_isSplittingField
isSplittingField_iSup
Finset.prod_ne_zero_iff
Polynomial.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.instNoZeroDivisors
IsDomain.to_noZeroDivisors
minpoly.ne_zero
Normal.isIntegral
adjoin_rootSet_isSplittingField
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
Polynomial.map_map
Polynomial.Splits.map
Normal.splits
iSup_le
le_iSup_of_le
adjoin_le_iff
Polynomial.Splits.image_rootSet
DivisionRing.isSimpleRing
minpoly_eq
normal_inf 📖mathematicalNormal
IntermediateField
SetLike.instMembership
instSetLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
normal_iInf
iInf_bool_eq
normal_sup 📖mathematicalNormal
IntermediateField
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
normal_iSup
iSup_bool_eq
splits_of_mem_adjoin 📖IsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
IntermediateField
SetLike.instMembership
instSetLike
adjoin
instIsDomain
IsScalarTower.left
normal_iSup
Normal.of_isSplittingField
adjoin_rootSet_isSplittingField
splits_of_splits
le_iSup
subset_adjoin
nonempty_algHom_adjoin_of_splits
AlgHomClass.toRingHomClass
AlgHom.algHomClass
minpoly.algHom_eq
RingHom.injective
DivisionRing.isSimpleRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.map_map
AlgHom.comp_algebraMap_of_tower
isScalarTower
Polynomial.Splits.map
Normal.splits

Normal

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isSplittingField 📖mathematicalPolynomial.IsSplittingFieldisNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Polynomial.Splits.prod
splits
Polynomial.map_prod
RelEmbedding.injective
instIsDomain
Algebra.top_toSubmodule
eq_top_iff
Module.Basis.span_eq
Submodule.span_le
Set.range_subset_iff
Algebra.subset_adjoin
Multiset.mem_toFinset
Polynomial.mem_roots
Polynomial.map_eq_zero
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Finset.prod_ne_zero_iff
Polynomial.nontrivial
Polynomial.instNoZeroDivisors
IsDomain.to_noZeroDivisors
minpoly.ne_zero
isIntegral
Polynomial.IsRoot.def
Polynomial.eval_map_algebraMap
map_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Finset.prod_eq_zero
Finset.mem_univ
minpoly.aeval
minpoly_eq_iff_mem_orbit 📖mathematicalminpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Set
Set.instMembership
MulAction.orbit
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SMulZeroClass.toSMul
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
DivisionSemiring.toGroupWithZero
instSMulZeroClass
AlgEquiv.aut
MulSemiringAction.toMulDistribMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.applyMulSemiringAction
IntermediateField.exists_algHom_of_splits_of_aeval
normal_iff
minpoly.aeval
AlgHom.normal_bijective
IsScalarTower.right
minpoly.algEquiv_eq
of_isSplittingField 📖mathematicalNormaleq_or_ne
instIsDomain
Polynomial.IsSplittingField.adjoin_rootSet
of_algEquiv
normal_self
Algebra.bijective_algebraMap_iff
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.adjoin_empty
Polynomial.rootSet_zero
normal_iff
IsIntegral.of_finite
Polynomial.IsSplittingField.finiteDimensional
Polynomial.SplittingField.splits
Polynomial.splits_mul_iff
Polynomial.map_ne_zero
DivisionRing.isSimpleRing
minpoly.ne_zero
Polynomial.map_mul
Polynomial.Splits.of_splits_map
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.map_map
AlgHom.comp_algebraMap
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
Polynomial.IsSplittingField.map
IntermediateField.isScalarTower_mid'
IsScalarTower.algebraMap_eq
IsScalarTower.of_algHom
Polynomial.IsSplittingField.adjoin_rootSet_eq_range
AlgHom.commutes
IntermediateField.algHomAdjoinIntegralEquiv_symm_apply_gen

Polynomial.SplittingField

Theorems

NameKindAssumesProvesValidatesDepends On
instNormal 📖mathematicalNormal
Polynomial.SplittingField
instField
instAlgebra
Semifield.toCommSemiring
Field.toSemifield
Algebra.id
Normal.of_isSplittingField
Polynomial.IsSplittingField.splittingField

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isSolvable_of_isScalarTower 📖mathematicalIsSolvable
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
AlgHom.ext
AlgEquiv.apply_symm_apply
AlgEquiv.symm_apply_apply
AlgEquiv.ext
solvable_of_ker_le_range
AlgEquiv.map_mul'
AlgEquiv.map_add'
AlgEquiv.restrictNormal_commutes
AlgEquiv.ext_iff

minpoly

Theorems

NameKindAssumesProvesValidatesDepends On
exists_algEquiv_of_root 📖mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AlgEquiv
AlgEquiv.instFunLike
ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsAlgebraic.isIntegral
IsScalarTower.left
eq_of_root
IntermediateField.isScalarTower_mid'
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
AlgEquiv.liftNormal_commutes
algEquiv_apply
IntermediateField.AdjoinSimple.algebraMap_gen
exists_algEquiv_of_root' 📖mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
AlgEquiv
AlgEquiv.instFunLike
exists_algEquiv_of_root
AlgEquiv.symm_apply_apply

---

← Back to Index