Documentation Verification Report

Closure

📁 Source: Mathlib/FieldTheory/Normal/Closure.lean

Statistics

MetricCount
DefinitionsalgHomEmbeddingOfSplits, closureOperator, normalClosure, normalClosureOperator, IsNormalClosure, equiv, algHomEquiv, algebra
8
TheoremsfieldRange_le_normalClosure, isNormalClosure_iff, isNormalClosure_normalClosure, normalClosure_eq_iSup_adjoin_of_splits, normalClosure_le_iSup_adjoin, le_normalClosure, normalClosureOperator_apply, normalClosureOperator_isClosed, normalClosure_def', normalClosure_def'', normalClosure_le_iff_of_normal, normalClosure_map_eq, normalClosure_mono, normalClosure_of_normal, normal_iff_forall_fieldRange_eq, normal_iff_forall_fieldRange_le, normal_iff_forall_map_eq, normal_iff_forall_map_eq', normal_iff_forall_map_le, normal_iff_forall_map_le', normal_iff_normalClosure_eq, normal_iff_normalClosure_le, adjoin_rootSet, normal, splits, isNormalClosure_normalClosure, instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure, instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure_1, is_finiteDimensional, normal, restrictScalars_eq, normalClosure_def, normalClosure_eq_iSup_adjoin, normalClosure_eq_iSup_adjoin', normalClosure_le_iff
35
Total43

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
fieldRange_le_normalClosure 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
fieldRange
IntermediateField.normalClosure
le_iSup

Algebra.IsAlgebraic

Definitions

NameCategoryTheorems
algHomEmbeddingOfSplits 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isNormalClosure_iff 📖mathematicalIsNormalClosure
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.normalClosure
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
instIsDomain
normalClosure_eq_iSup_adjoin_of_splits
isNormalClosure_normalClosure 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IsNormalClosure
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.normalClosure
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
isNormalClosure_iff
instIsDomain
normalClosure_eq_iSup_adjoin_of_splits
IntermediateField.splits_of_splits
HasSubset.Subset.trans
Set.instIsTransSubset
IntermediateField.subset_adjoin
SetLike.coe_subset_coe
instIsConcreteLE
le_iSup
Function.Injective.mem_set_image
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.toRingHom_eq_coe
RingHom.coe_coe
IntermediateField.coe_val
IntermediateField.coe_map
IntermediateField.map_iSup
iSup_le
le_iSup_of_le
AlgHom.fieldRange_le_normalClosure
AlgHom.map_fieldRange
IntermediateField.val.eq_1
AlgHom.val_comp_codRestrict
le_refl
normalClosure_eq_iSup_adjoin_of_splits 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.normalClosure
iSup
IntermediateField
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
IntermediateField.adjoin
Polynomial.rootSet
instIsDomain
LE.le.antisymm
instIsDomain
normalClosure_le_iSup_adjoin
iSup_le
IntermediateField.adjoin_le_iff
IntermediateField.exists_algHom_of_splits_of_aeval
Algebra.IsIntegral.isIntegral
isIntegral
Polynomial.mem_rootSet
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
le_iSup
normalClosure_le_iSup_adjoin 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
IntermediateField.normalClosure
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
IntermediateField.adjoin
Polynomial.rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
minpoly
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
Field.toSemifield
iSup_le
instIsDomain
le_iSup
IntermediateField.subset_adjoin
Polynomial.mem_rootSet_of_ne
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
minpoly.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.IsIntegral.isIntegral
isIntegral
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.toRingHom_eq_coe
AlgHom.coe_toRingHom
Polynomial.aeval_algHom_apply
minpoly.aeval
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass

IntermediateField

Definitions

NameCategoryTheorems
closureOperator 📖CompOp
normalClosure 📖CompOp
42 mathmath: normalClosure_le_iff, algebraicClosure.normalClosure_eq_self, IsGalois.normalClosure, normalClosure_eq_iSup_adjoin', Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, normal_iff_normalClosure_le, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, normalClosure.restrictScalars_eq, isNormalClosure_normalClosure, Ring.instIsFractionRingNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure_1, normalClosure_def, instSeminormClassAlgebraNormSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, Ring.instIsSeparableFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, normalClosure.instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure, normalClosureOperator_apply, normalClosure_of_normal, Algebra.IsAlgebraic.isNormalClosure_iff, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, spectralNorm.eq_of_normalClosure, Ring.instFiniteDimensionalFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, spectralNorm.eq_of_normalClosure', normalClosure_def'', FiniteGaloisIntermediateField.adjoin_val, Algebra.IsAlgebraic.isNormalClosure_normalClosure, AlgHom.fieldRange_le_normalClosure, Ring.instFaithfulSMulSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, normalClosure_eq_iSup_adjoin, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, normalClosure.normal, normalClosure_mono, normalClosure_le_iff_of_normal, normalClosure_map_eq, Ring.instIsIntegralClosureNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, le_normalClosure, normalClosure_def', Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, Algebra.IsAlgebraic.normalClosure_eq_iSup_adjoin_of_splits, normalClosure.is_finiteDimensional, Algebra.IsAlgebraic.normalClosure_le_iSup_adjoin, normal_iff_normalClosure_eq, separableClosure.normalClosure_eq_self
normalClosureOperator 📖CompOp
2 mathmath: normalClosureOperator_apply, normalClosureOperator_isClosed

Theorems

NameKindAssumesProvesValidatesDepends On
le_normalClosure 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
normalClosure
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
Eq.trans_le
IsScalarTower.left
fieldRange_val
AlgHom.fieldRange_le_normalClosure
normalClosureOperator_apply 📖mathematicalDFunLike.coe
ClosureOperator
IntermediateField
PartialOrder.toPreorder
instPartialOrder
ClosureOperator.instFunLike
normalClosureOperator
normalClosure
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
normalClosureOperator_isClosed 📖mathematicalClosureOperator.IsClosed
IntermediateField
PartialOrder.toPreorder
instPartialOrder
normalClosureOperator
normalClosure_def' 📖mathematicalnormalClosure
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
iSup
AlgHom
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
map
IsScalarTower.left
normalClosure_def
le_antisymm
iSup_le
le_iSup_of_le
isScalarTower_mid'
IsScalarTower.right
AlgHom.liftNormal_commutes
normalClosure_def'' 📖mathematicalnormalClosure
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
iSup
AlgEquiv
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
map
AlgHomClass.toAlgHom
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
IsScalarTower.left
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
normalClosure_def'
le_antisymm
iSup_le
le_iSup_of_le
IsScalarTower.right
AlgHom.restrictNormal_commutes
le_rfl
normalClosure_le_iff_of_normal 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
normalClosure
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
fieldRange_val
normalClosure_le_iff
normalClosure_of_normal
normalClosure_mono
normalClosure_map_eq 📖mathematicalnormalClosure
IntermediateField
SetLike.instMembership
instSetLike
map
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
IsScalarTower.left
normalClosure_def''
map_map
Equiv.iSup_congr
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Normal.toIsAlgebraic
normalClosure_mono 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
normalClosure
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
normalClosure_def'
iSup_mono
map_mono
normalClosure_of_normal 📖mathematicalnormalClosure
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
AlgHom.fieldRange_of_normal
iSup_const
normal_iff_forall_fieldRange_eq 📖mathematicalNormal
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
AlgHom.fieldRange
IsScalarTower.left
AlgHom.fieldRange_of_normal
normal_iff_forall_fieldRange_le
Eq.le
normal_iff_forall_fieldRange_le 📖mathematicalNormal
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AlgHom.fieldRange
IsScalarTower.left
normal_iff_normalClosure_le
normalClosure_def
iSup_le_iff
normal_iff_forall_map_eq 📖mathematicalNormal
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
map
IsScalarTower.left
AlgHom.map_fieldRange
fieldRange_val
normal_iff_forall_fieldRange_eq
normal_iff_forall_map_le
Eq.le
normal_iff_forall_map_eq' 📖mathematicalNormal
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
map
AlgHomClass.toAlgHom
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
IsScalarTower.left
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
normal_iff_forall_map_eq
normal_iff_forall_map_le'
Eq.le
normal_iff_forall_map_le 📖mathematicalNormal
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
IsScalarTower.left
normal_iff_normalClosure_le
normalClosure_def'
iSup_le_iff
normal_iff_forall_map_le' 📖mathematicalNormal
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
AlgHomClass.toAlgHom
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
IsScalarTower.left
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
normal_iff_normalClosure_le
normalClosure_def''
iSup_le_iff
normal_iff_normalClosure_eq 📖mathematicalNormal
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
normalClosure
IsScalarTower.left
normalClosure_of_normal
normalClosure.normal
normal_iff_normalClosure_le 📖mathematicalNormal
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
normalClosure
IsScalarTower.left
normal_iff_normalClosure_eq
LE.le.ge_iff_eq'
le_normalClosure

IsNormalClosure

Definitions

NameCategoryTheorems
equiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_rootSet 📖mathematicaliSup
IntermediateField
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
IntermediateField.adjoin
Polynomial.rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
minpoly
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
Field.toSemifield
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
normal 📖mathematicalNormalNormal.of_algEquiv
IsScalarTower.left
instIsDomain
IntermediateField.normal_iSup
Normal.of_isSplittingField
IntermediateField.adjoin_rootSet_isSplittingField
splits
adjoin_rootSet
splits 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing

(root)

Definitions

NameCategoryTheorems
IsNormalClosure 📖CompData
3 mathmath: isNormalClosure_normalClosure, Algebra.IsAlgebraic.isNormalClosure_iff, Algebra.IsAlgebraic.isNormalClosure_normalClosure

Theorems

NameKindAssumesProvesValidatesDepends On
isNormalClosure_normalClosure 📖mathematicalIsNormalClosure
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.normalClosure
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
Algebra.IsAlgebraic.isNormalClosure_normalClosure
Algebra.IsAlgebraic.of_injective
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Normal.toIsAlgebraic
minpoly.algHom_eq
Normal.splits
normalClosure_def 📖mathematicalIntermediateField.normalClosure
iSup
IntermediateField
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
AlgHom.fieldRange
normalClosure_eq_iSup_adjoin 📖mathematicalIntermediateField.normalClosure
iSup
IntermediateField
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
IntermediateField.adjoin
Polynomial.rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
minpoly
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
Field.toSemifield
normalClosure_eq_iSup_adjoin'
normalClosure_eq_iSup_adjoin' 📖mathematicalIntermediateField.normalClosure
iSup
IntermediateField
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
IntermediateField.adjoin
Polynomial.rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
minpoly
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
Field.toSemifield
instIsDomain
Algebra.IsAlgebraic.normalClosure_eq_iSup_adjoin_of_splits
Algebra.IsAlgebraic.of_injective
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Normal.toIsAlgebraic
minpoly.algHom_eq
Normal.splits
normalClosure_le_iff 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
IntermediateField.normalClosure
AlgHom.fieldRange
iSup_le_iff

normalClosure

Definitions

NameCategoryTheorems
algHomEquiv 📖CompOp
algebra 📖CompOp
9 mathmath: Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, restrictScalars_eq, instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure_1, Ring.instIsSeparableFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, spectralNorm.eq_of_normalClosure, Ring.instFiniteDimensionalFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, spectralNorm.eq_of_normalClosure'

Theorems

NameKindAssumesProvesValidatesDepends On
instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure 📖mathematicalIsScalarTower
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.normalClosure
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
algebra
IntermediateField.algebra'
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.of_algebraMap_eq'
IsScalarTower.left
RingHom.ext
IsScalarTower.algebraMap_apply
instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure_1 📖mathematicalIsScalarTower
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.normalClosure
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
algebra
IntermediateField.instSMulSubtypeMem
CommSemiring.toSemiring
Algebra.id
IsScalarTower.of_algebraMap_eq'
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
is_finiteDimensional 📖mathematicalFiniteDimensional
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.normalClosure
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
IntermediateField.toField
IntermediateField.module'
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
Semifield.toDivisionSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
IntermediateField.finiteDimensional_iSup_of_finite
Finite.algHom
Module.Free.of_divisionRing
instIsDomain
LinearMap.finiteDimensional_range
normal 📖mathematicalNormal
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.normalClosure
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
isEmpty_or_nonempty
IntermediateField.normalClosure.eq_1
iSup_of_empty
Normal.of_algEquiv
normal_self
IsNormalClosure.normal
isNormalClosure_normalClosure
restrictScalars_eq 📖mathematicalIntermediateField.restrictScalars
AlgHom.fieldRange
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.normalClosure
IntermediateField.toField
algebra
IsScalarTower.toAlgHom
Semifield.toCommSemiring
Field.toSemifield
SubsemiringClass.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.instAlgebraSubtypeMem
Algebra.id
instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure_1
SetLike.ext'
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
instIsScalarTowerSubtypeMemIntermediateFieldNormalClosure_1
Subtype.range_val

---

← Back to Index