Documentation Verification Report

Defs

📁 Source: Mathlib/FieldTheory/Normal/Defs.lean

Statistics

MetricCount
DefinitionsrestrictNormal, restrictNormalHom, restrictNormal, restrictNormal', restrictNormalAux, Normal, algHomEquivAut
7
TheoremsrestrictNormalHom_apply, restrictNormalHom_id, restrictNormal_commutes, restrictNormal_trans, transfer_normal, normal_bijective, restrictNormal_commutes, restrictNormal_comp, restrictScalars_normal, restrictNormalHom_comp, restrictNormalHom_comp_apply, algHomEquivAut_apply, algHomEquivAut_symm_apply, isIntegral, of_algEquiv, of_equiv_equiv, out, splits, splits', toIsAlgebraic, tower_top_of_normal, normal_iff, normal_self
23
Total30

AlgEquiv

Definitions

NameCategoryTheorems
restrictNormal 📖CompOp
4 mathmath: restrictNormal_trans, restrict_liftNormal, IsCyclotomicExtension.Rat.galEquivZMod_restrictNormal_apply, restrictNormal_commutes
restrictNormalHom 📖CompOp
12 mathmath: InfiniteGalois.normalAutEquivQuotient_apply, FiniteGaloisIntermediateField.mem_fixingSubgroup_iff, restrictNormalHom_surjective, IntermediateField.map_fixingSubgroup, IsScalarTower.AlgEquiv.restrictNormalHom_comp, IsGalois.normalAutEquivQuotient_apply, InfiniteGalois.restrict_fixedField, restrictNormalHom_id, InfiniteGalois.restrictNormalHom_continuous, restrictNormalHom_apply, IsScalarTower.AlgEquiv.restrictNormalHom_comp_apply, IntermediateField.restrictNormalHom_ker

Theorems

NameKindAssumesProvesValidatesDepends On
restrictNormalHom_apply 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
instFunLike
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
aut
MonoidHom.instFunLike
restrictNormalHom
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
IsScalarTower.left
restrictNormal_commutes
IntermediateField.isScalarTower_mid'
restrictNormalHom_id 📖mathematicalrestrictNormalHom
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
IsScalarTower.right
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidHom.id
AlgEquiv
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
aut
MonoidHom.ext
IsScalarTower.right
ext
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
restrictNormal_commutes
restrictNormal_commutes 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
AlgEquiv
instFunLike
restrictNormal
AlgHom.restrictNormal_commutes
restrictNormal_trans 📖mathematicalrestrictNormal
trans
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
ext
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
restrictNormal_commutes
transfer_normal 📖mathematicalNormalNormal.of_algEquiv

AlgHom

Definitions

NameCategoryTheorems
restrictNormal 📖CompOp
3 mathmath: restrictNormal_comp, restrict_liftNormal, restrictNormal_commutes
restrictNormal' 📖CompOp
1 mathmath: Normal.algHomEquivAut_apply
restrictNormalAux 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
normal_bijective 📖mathematicalFunction.Bijective
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
funLike
Algebra.IsAlgebraic.bijective_of_isScalarTower'
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Normal.toIsAlgebraic
restrictNormal_commutes 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
AlgHom
funLike
restrictNormal
IsLocalRing.toNontrivial
Field.instIsLocalRing
AlgEquiv.apply_symm_apply
restrictNormal_comp 📖mathematicalcomp
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
restrictNormal
ext
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
restrictNormal_commutes

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
restrictScalars_normal 📖mathematicalNormal
IntermediateField
SetLike.instMembership
instSetLike
restrictScalars
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left

IsScalarTower.AlgEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
restrictNormalHom_comp 📖mathematicalAlgEquiv.restrictNormalHom
MonoidHom.comp
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MonoidHom.ext
AlgEquiv.ext
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsScalarTower.algebraMap_eq
AlgEquiv.restrictNormal_commutes
restrictNormalHom_comp_apply 📖mathematicalDFunLike.coe
MonoidHom
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MonoidHom.instFunLike
AlgEquiv.restrictNormalHom
restrictNormalHom_comp
MonoidHom.comp_apply

Normal

Definitions

NameCategoryTheorems
algHomEquivAut 📖CompOp
2 mathmath: algHomEquivAut_symm_apply, algHomEquivAut_apply

Theorems

NameKindAssumesProvesValidatesDepends On
algHomEquivAut_apply 📖mathematicalDFunLike.coe
Equiv
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv
EquivLike.toFunLike
Equiv.instEquivLike
algHomEquivAut
AlgHom.restrictNormal'
Algebra.id
algHomEquivAut_symm_apply 📖mathematicalDFunLike.coe
Equiv
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
algHomEquivAut
AlgHom.comp
CommSemiring.toSemiring
IsScalarTower.toAlgHom
AlgEquiv.toAlgHom
isIntegral 📖mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
toIsAlgebraic
of_algEquiv 📖mathematicalNormalnormal_iff
AlgEquiv.apply_symm_apply
minpoly.algEquiv_eq
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
Polynomial.map_map
IsIntegral.map
IsScalarTower.left
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Polynomial.Splits.map
of_equiv_equiv 📖mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
algebraMap
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
NormalRingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
normal_iff
RingEquiv.apply_symm_apply
IsIntegral.map_of_comp_eq
minpoly.map_eq_of_equiv_equiv
instIsDomain
Algebra.IsAlgebraic.isIntegral
Polynomial.map_map
Polynomial.Splits.map
out 📖mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
normal_iff
splits 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
splits'
splits' 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toIsAlgebraic 📖mathematicalAlgebra.IsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
tower_top_of_normal 📖mathematicalNormalnormal_iff
out
IsIntegral.tower_top
Polynomial.Splits.of_dvd
instIsDomain
Polynomial.map_map
IsScalarTower.algebraMap_eq
Polynomial.map_ne_zero
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
minpoly.ne_zero
Polynomial.map_dvd_map'
minpoly.dvd_map_of_isScalarTower

(root)

Definitions

NameCategoryTheorems
Normal 📖CompData
31 mathmath: IntermediateField.normal_inf, IsGalois.to_normal, Normal.of_isSplittingField, IntermediateField.normal_iff_forall_map_eq, IntermediateField.restrictScalars_normal, IntermediateField.AdjoinDouble.normal_algebraicClosure, FixedPoints.normal, IntermediateField.normal_iff_normalClosure_le, IsPurelyInseparable.normal, Normal.of_equiv_equiv, Ideal.Quotient.normal, IntermediateField.normal_iff_forall_fieldRange_le, Algebra.IsQuadraticExtension.normal, AlgEquiv.transfer_normal, IntermediateField.normal_iff_forall_map_le', IntermediateField.normal_iff_forall_fieldRange_eq, IsNormalClosure.normal, Normal.of_algEquiv, normal_iff, IntermediateField.normal_iff_forall_map_le, isGalois_iff, IntermediateField.AdjoinSimple.normal_algebraicClosure, IntermediateField.normal_iff_forall_map_eq', krullTopology_mem_nhds_one_iff_of_normal, IsAlgClosure.normal, normalClosure.normal, normal_self, IntermediateField.normal_sup, IntermediateField.normal_iff_normalClosure_eq, Polynomial.SplittingField.instNormal, Normal.tower_top_of_normal

Theorems

NameKindAssumesProvesValidatesDepends On
normal_iff 📖mathematicalNormal
IsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
Normal.isIntegral
Normal.splits
IsIntegral.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
normal_self 📖mathematicalNormal
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
IsIntegral.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
isIntegral_algebraMap
Polynomial.map_sub
Polynomial.map_X
Polynomial.map_C
minpoly.eq_X_sub_C'

---

← Back to Index