Documentation Verification Report

PrimeField

📁 Source: Mathlib/FieldTheory/PrimeField.lean

Statistics

MetricCount
Definitions0
Theoremsbot_eq_of_charZero, bot_eq_of_zMod_algebra, instSubsingletonSubfieldRat, instSubsingletonSubfieldZMod
4
Total4

Subfield

Theorems

NameKindAssumesProvesValidatesDepends On
bot_eq_of_charZero 📖mathematicalBot.bot
Subfield
Field.toDivisionRing
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
RingHom.fieldRange
Rat.instDivisionRing
algebraMap
Rat.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivisionRing.toRatAlgebra
eq_bot_iff
map_bot
subsingleton_iff_bot_eq_top
instSubsingletonSubfieldRat
RingHom.fieldRange_eq_map
le_refl
bot_eq_of_zMod_algebra 📖mathematicalBot.bot
Subfield
Field.toDivisionRing
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
RingHom.fieldRange
ZMod
ZMod.instField
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
eq_bot_iff
map_bot
subsingleton_iff_bot_eq_top
instSubsingletonSubfieldZMod
RingHom.fieldRange_eq_map
le_refl

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instSubsingletonSubfieldRat 📖mathematicalSubfield
Rat.instDivisionRing
subsingleton_of_top_le_bot
SubsemiringClass.instCharZero
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
Rat.instCharZero
Rat.subsingleton_ringHom
Subtype.prop
instSubsingletonSubfieldZMod 📖mathematicalSubfield
ZMod
Field.toDivisionRing
ZMod.instField
subsingleton_of_top_le_bot
dvd_rfl
Subfield.charP
ZMod.charP
ZMod.subsingleton_ringHom
Subtype.prop

---

← Back to Index