Documentation Verification Report

PrimitiveElement

πŸ“ Source: Mathlib/FieldTheory/PrimitiveElement.lean

Statistics

MetricCount
DefinitionspowerBasisOfFiniteOfSeparable
1
Theoremscard, card_of_splits, natCard_of_splits, of_exists_primitive_element, of_finite_intermediateField, exists_primitive_element, exists_primitive_element_iff_finite_intermediateField, exists_primitive_element_of_finite_bot, exists_primitive_element_of_finite_intermediateField, exists_primitive_element_of_finite_top, finite_intermediateField_of_exists_primitive_element, isAlgebraic_of_adjoin_eq_adjoin, isAlgebraic_of_finite_intermediateField, primitive_element_iff_algHom_eq_of_eval, primitive_element_iff_algHom_eq_of_eval', primitive_element_iff_minpoly_degree_eq, primitive_element_iff_minpoly_natDegree_eq, primitive_element_inf_aux, primitive_element_inf_aux_exists_c
19
Total20

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
card πŸ“–mathematicalβ€”Fintype.card
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
minpoly.AlgHom.fintype
DivisionRing.toRing
Field.toDivisionRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Module.finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”card_of_splits
IsAlgClosed.splits
card_of_splits πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Fintype.card
AlgHom
minpoly.AlgHom.fintype
instIsDomain
Module.finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”instIsDomain
Fintype.card_eq_nat_card
natCard_of_splits
natCard_of_splits πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Nat.card
AlgHom
Module.finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”natCard_of_powerBasis
Algebra.IsSeparable.isSeparable
PowerBasis.finrank
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing

Field

Definitions

NameCategoryTheorems
powerBasisOfFiniteOfSeparable πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_primitive_element πŸ“–mathematicalβ€”IntermediateField.adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”isEmpty_or_nonempty
IntermediateField.adjoin_zero
IsScalarTower.left
IntermediateField.isScalarTower_mid'
IntermediateField.adjoin_simple_adjoin_simple
primitive_element_inf_aux
isEmpty_fintype
IntermediateField.induction_on_adjoin
exists_primitive_element_of_finite_bot
Finite.of_fintype
exists_primitive_element_iff_finite_intermediateField πŸ“–mathematicalβ€”Algebra.IsAlgebraic
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
IntermediateField.adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Finite
β€”finite_intermediateField_of_exists_primitive_element
isAlgebraic_of_finite_intermediateField
exists_primitive_element_of_finite_intermediateField
exists_primitive_element_of_finite_bot πŸ“–mathematicalβ€”IntermediateField.adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”exists_primitive_element_of_finite_top
Module.finite_of_finite
exists_primitive_element_of_finite_intermediateField πŸ“–mathematicalβ€”IntermediateField.adjoin
Set
Set.instSingletonSet
β€”finite_or_infinite
IsScalarTower.left
exists_primitive_element_of_finite_bot
IntermediateField.finiteDimensional_left
FiniteDimensional.of_finite_intermediateField
IntermediateField.lift_adjoin_simple
IntermediateField.lift_top
IntermediateField.induction_on_adjoin
IntermediateField.adjoin_zero
IntermediateField.isScalarTower_mid'
IntermediateField.adjoin_simple_adjoin_simple
exists_primitive_element_of_finite_top πŸ“–mathematicalβ€”IntermediateField.adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”IsCyclic.exists_generator
instIsCyclicUnitsOfFinite
instIsDomain
instFiniteUnits
eq_top_iff
IntermediateField.zero_mem
Set.mem_range
Units.val_mk0
zpow_mem
SubfieldClass.toSubgroupClass
IntermediateField.instSubfieldClass
IntermediateField.mem_adjoin_simple_self
finite_intermediateField_of_exists_primitive_element πŸ“–mathematicalIntermediateField.adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Finiteβ€”Finite.of_fintype
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsDomain
EuclideanDomain.to_principal_ideal_domain
Polynomial.map_ne_zero
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
instIsLocalRing
minpoly.ne_zero_of_finite
FiniteDimensional.of_exists_primitive_element
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Polynomial.Monic.map
minpoly.monic
IsIntegral.of_finite
IntermediateField.finiteDimensional_right
IsScalarTower.left
Polynomial.map_map
Polynomial.map_dvd
minpoly.dvd_map_of_isScalarTower
IntermediateField.isScalarTower_mid'
IntermediateField.adjoin_minpoly_coeff_of_exists_primitive_element
Finite.of_injective
isAlgebraic_of_adjoin_eq_adjoin πŸ“–mathematicalIntermediateField.adjoin
Set
Set.instSingletonSet
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
IsAlgebraic
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
β€”IntermediateField.mem_bot
IntermediateField.mem_adjoin_simple_self
pow_zero
IntermediateField.adjoin_one
Polynomial.X_pow_sub_C_ne_zero
IsLocalRing.toNontrivial
instIsLocalRing
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Polynomial.aeval_X
Polynomial.aeval_C
sub_self
IntermediateField.mem_adjoin_simple_iff
isAlgebraic_zero
div_zero
pow_eq_zero_iff
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
map_zero
MonoidWithZeroHomClass.toZeroHomClass
sub_eq_zero
eq_div_iff
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Int.instCharZero
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.cast_zero
Polynomial.coeff_sub
Polynomial.coeff_X_pow_mul
Polynomial.coeff_expand_mul'
Polynomial.coeff_expand
sub_zero
Polynomial.leadingCoeff_ne_zero
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
Polynomial.expand_aeval
Ne.lt_or_gt
isAlgebraic_of_finite_intermediateField πŸ“–mathematicalβ€”Algebra.IsAlgebraic
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
β€”Finite.exists_ne_map_eq_of_infinite
instInfiniteNat
isAlgebraic_of_adjoin_eq_adjoin
primitive_element_iff_algHom_eq_of_eval πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
IntermediateField.adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”primitive_element_iff_algHom_eq_of_eval'
IntermediateField.eq_of_le_of_finrank_eq'
IntermediateField.finiteDimensional_right
le_top
IntermediateField.finrank_top
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
instIsDomain
AlgHom.card_of_splits
IntermediateField.isSeparable_tower_top
IsIntegral.minpoly_splits_tower_top
IntermediateField.isScalarTower_mid'
IsScalarTower.of_algHom
IsIntegral.of_finite
Fintype.card_eq_one_iff
AlgHom.restrictScalars_injective
AlgHom.commutes
primitive_element_iff_algHom_eq_of_eval' πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
IntermediateField.adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
AlgHom
DFunLike.coe
AlgHom.funLike
β€”instIsDomain
Polynomial.card_rootSet_eq_natDegree
Algebra.IsSeparable.isSeparable
Set.toFinset_congr
Algebra.IsAlgebraic.range_eval_eq_rootSet_minpoly_of_splits
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
instIsLocalRing
AlgHom.card_of_splits
Set.toFinset_range
Finset.coe_univ
primitive_element_iff_minpoly_degree_eq πŸ“–mathematicalβ€”IntermediateField.adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
toEuclideanDomain
minpoly
DivisionRing.toRing
toDivisionRing
WithBot
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semifield.toCommSemiring
β€”Polynomial.degree_eq_iff_natDegree_eq
minpoly.ne_zero_of_finite
primitive_element_iff_minpoly_natDegree_eq
primitive_element_iff_minpoly_natDegree_eq πŸ“–mathematicalβ€”IntermediateField.adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
toEuclideanDomain
minpoly
DivisionRing.toRing
toDivisionRing
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semifield.toCommSemiring
β€”IsScalarTower.left
IntermediateField.adjoin.finrank
IsIntegral.of_finite
finrank_top
IntermediateField.eq_of_le_of_finrank_eq
IntermediateField.finiteDimensional_left
le_top
primitive_element_inf_aux πŸ“–mathematicalβ€”IntermediateField.adjoin
Set
Set.instInsert
Set.instSingletonSet
β€”Algebra.IsSeparable.isIntegral
instIsDomain
primitive_element_inf_aux_exists_c
IsScalarTower.left
IntermediateField.adjoin.algebraMap_mem
Polynomial.map_ne_zero
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
instIsLocalRing
minpoly.ne_zero
EuclideanDomain.gcd_eq_zero_iff
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Polynomial.separable_gcd_right
Polynomial.Separable.map
Algebra.IsSeparable.isSeparable
Polynomial.eval_gcd_eq_zero
Polynomial.eval_comp
Polynomial.eval_sub
Polynomial.eval_mul
Polynomial.eval_C
Polynomial.eval_X
Polynomial.eval_map_algebraMap
Algebra.smul_def
add_sub_cancel_right
minpoly.aeval
Polynomial.gcd_map
Polynomial.Splits.of_dvd
Polynomial.SplittingField.splits
EuclideanDomain.gcd_dvd_right
Polynomial.root_left_of_root_gcd
Polynomial.mem_roots_map
Polynomial.evalβ‚‚_map
Polynomial.evalβ‚‚_X
Polynomial.evalβ‚‚_C
Polynomial.evalβ‚‚_mul
Polynomial.evalβ‚‚_sub
Polynomial.evalβ‚‚_comp
Polynomial.root_right_of_root_gcd
div_eq_iff
sub_ne_zero
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.add_pf_add_gt
Polynomial.eq_X_sub_C_of_separable_of_root_eq
Polynomial.map_comp
Polynomial.map_map
IntermediateField.isScalarTower_mid'
Polynomial.map_sub
Polynomial.map_C
Polynomial.map_mul
Polynomial.map_X
SubfieldClass.toSubgroupClass
SubringClass.toNegMemClass
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
map_neg
mul_sub
Polynomial.coeff_sub
Polynomial.mul_coeff_zero
Polynomial.coeff_C
Polynomial.coeff_X_zero
MulZeroClass.mul_zero
zero_sub
neg_neg
Polynomial.coeff_mul_X
Polynomial.coeff_mul_C
Polynomial.coeff_C_succ
MulZeroClass.zero_mul
sub_zero
mul_div_cancel_leftβ‚€
EuclideanDomain.toMulDivCancelClass
Polynomial.leadingCoeff_eq_zero
Subtype.mem
le_antisymm
IntermediateField.adjoin_le_iff
IntermediateField.sub_mem
IntermediateField.mem_adjoin_simple_self
Subalgebra.smul_mem
IntermediateField.adjoin_simple_le_iff
IntermediateField.subset_adjoin
Set.mem_insert
Set.mem_insert_of_mem
IntermediateField.add_mem
IntermediateField.smul_mem
primitive_element_inf_aux_exists_c πŸ“–β€”β€”β€”β€”instIsDomain
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
instIsLocalRing
Infinite.exists_notMem_finset
Mathlib.Tactic.Push.not_and_eq

Field.FiniteDimensional

Theorems

NameKindAssumesProvesValidatesDepends On
of_exists_primitive_element πŸ“–mathematicalIntermediateField.adjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
FiniteDimensional
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
Algebra.toModule
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”IsScalarTower.left
IntermediateField.adjoin.finiteDimensional
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
LinearEquiv.finiteDimensional
of_finite_intermediateField πŸ“–mathematicalβ€”FiniteDimensional
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
Algebra.toModule
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”Field.isAlgebraic_of_finite_intermediateField
IsScalarTower.left
IntermediateField.finiteDimensional_iSup_of_finite
Subtype.finite
IntermediateField.adjoin.finiteDimensional
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
LE.le.antisymm
le_top
le_iSup
IntermediateField.mem_adjoin_simple_self
LinearEquiv.finiteDimensional

---

← Back to Index