Documentation Verification Report

Basic

📁 Source: Mathlib/FieldTheory/PurelyInseparable/Basic.lean

Statistics

MetricCount
DefinitionsIsPurelyInseparable, perfectClosure, instUniqueAlgHomOfIsPurelyInseparable, instUniqueEmbOfIsPurelyInseparable
4
TheoremsisPurelyInseparable, isPurelyInseparable_iff, isPurelyInseparable_of_isSepClosed, isSepClosed, cardinal_separableClosure, finSepDegree_eq, finSepDegree_mul_finInsepDegree, eq_bot_of_isPurelyInseparable_of_isSeparable, isPurelyInseparable_bot, isPurelyInseparable_tower_bot, isPurelyInseparable_tower_top, bijective_algebraMap_of_isSeparable, bijective_comp_algebraMap, bijective_restrictDomain, exists_pow_mem_range_tensorProduct, exists_pow_pow_mem_range_tensorProduct_of_expChar, finInsepDegree_eq, finSepDegree_eq_one, finrank_eq_pow, injective_comp_algebraMap, injective_restrictDomain, insepDegree_eq, inseparable, inseparable', instNonemptyAlgHomOfPerfectField, isAlgebraic, isIntegral, isIntegral', minpoly_eq_X_pow_sub_C, minpoly_eq_X_sub_C_pow, natSepDegree_eq_one, normal, of_injective_comp_algebraMap, pow_mem, sepDegree_eq_one, surjective_algebraMap_of_isSeparable, tower_bot, tower_top, trans, eq_bot_of_isPurelyInseparable_of_isSeparable, mem_perfectClosure_iff, eq_separableClosure, eq_separableClosure_iff, finInsepDegree_eq_pow, instSubsingletonAlgHomOfIsPurelyInseparable, isPurelyInseparable_iff, isPurelyInseparable_iff_fd_isPurelyInseparable, isPurelyInseparable_iff_finSepDegree_eq_one, isPurelyInseparable_iff_minpoly_eq_X_pow_sub_C, isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow, isPurelyInseparable_iff_natSepDegree_eq_one, isPurelyInseparable_iff_pow_mem, isPurelyInseparable_of_finSepDegree_eq_one, isPurelyInseparable_self, isSepClosed_iff_isPurelyInseparable_algebraicClosure, isSeparable_iff_finInsepDegree_eq_one, adjoin_eq_of_isAlgebraic, adjoin_eq_of_isAlgebraic_of_isSeparable, eq_bot_iff, eq_bot_of_isPurelyInseparable, isPurelyInseparable, separableClosure_le, separableClosure_le_iff
63
Total67

AlgEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isPurelyInseparable 📖mathematicalIsPurelyInseparableisIntegral_algEquiv
IsPurelyInseparable.isIntegral'
IsPurelyInseparable.inseparable
minpoly.algEquiv_eq
IsSeparable.eq_1
isPurelyInseparable_iff 📖mathematicalIsPurelyInseparableisPurelyInseparable

Algebra.IsAlgebraic

Theorems

NameKindAssumesProvesValidatesDepends On
isPurelyInseparable_of_isSepClosed 📖mathematicalIsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
isIntegral
minpoly.mem_range_of_degree_eq_one
IsSepClosed.degree_eq_one_of_irreducible
minpoly.irreducible
instIsDomain
Algebra.IsIntegral.isIntegral
isSepClosed 📖mathematicalIsSepClosedtrans
AlgebraicClosure.instIsScalarTower
IsScalarTower.right
IsDomain.to_noZeroDivisors
instIsDomain
AlgebraicClosure.isAlgebraic
isSepClosed_iff_isPurelyInseparable_algebraicClosure
AlgebraicClosure.instIsAlgClosureOfIsAlgebraic
Algebra.IsSeparable.isAlgebraic
EuclideanDomain.toNontrivial
Algebra.isSeparable_self
IsPurelyInseparable.tower_top
isPurelyInseparable_of_isSepClosed

Field

Theorems

NameKindAssumesProvesValidatesDepends On
finSepDegree_eq 📖mathematicalfinSepDegree
DFunLike.coe
MonoidWithZeroHom
Cardinal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Cardinal.commSemiring
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Cardinal.toNat
sepDegree
IsScalarTower.left
finSepDegree_mul_finSepDegree_of_isAlgebraic
IntermediateField.isScalarTower_mid'
IntermediateField.isAlgebraic_tower_top
mul_one
IsPurelyInseparable.finSepDegree_eq_one
separableClosure.isPurelyInseparable
finSepDegree_eq_finrank_of_isSeparable
separableClosure.isSeparable
finSepDegree_mul_finInsepDegree 📖mathematicalfinSepDegree
finInsepDegree
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
sepDegree_mul_insepDegree
finSepDegree_eq
Cardinal.toNat_mul
finInsepDegree.eq_1
Module.finrank_of_infinite_dimensional
Algebra.IsAlgebraic.of_finite
EuclideanDomain.toNontrivial
Algebra.IsAlgebraic.trans
IsScalarTower.left
IntermediateField.isScalarTower_mid'
SubsemiringClass.noZeroDivisors
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsDomain.to_noZeroDivisors
instIsDomain
separableClosure.isAlgebraic
SubsemiringClass.nontrivial
MulZeroClass.mul_zero

Field.Emb

Theorems

NameKindAssumesProvesValidatesDepends On
cardinal_separableClosure 📖mathematicalField.Emb
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
separableClosure
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
Equiv.cardinal_eq
IntermediateField.isScalarTower_mid'
IntermediateField.isAlgebraic_tower_top
Cardinal.mk_prod
Cardinal.mk_eq_one
instSubsingletonAlgHomOfIsPurelyInseparable
separableClosure.isPurelyInseparable
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
IsPurelyInseparable.instNonemptyAlgHomOfPerfectField
IsAlgClosed.perfectField
AlgebraicClosure.isAlgClosed
Cardinal.lift_one
mul_one
Cardinal.lift_id

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
eq_bot_of_isPurelyInseparable_of_isSeparable 📖mathematicalBot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IsScalarTower.left
bot_unique
IsPurelyInseparable.surjective_algebraMap_of_isSeparable
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
isPurelyInseparable_bot 📖mathematicalIsPurelyInseparable
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.isPurelyInseparable
IsScalarTower.left
isPurelyInseparable_self
isPurelyInseparable_tower_bot 📖mathematicalIsPurelyInseparable
IntermediateField
SetLike.instMembership
instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsPurelyInseparable.tower_bot
IsScalarTower.left
isScalarTower_mid'
isPurelyInseparable_tower_top 📖mathematicalIsPurelyInseparable
IntermediateField
SetLike.instMembership
instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
DivisionRing.toRing
Field.toDivisionRing
instAlgebraSubtypeMem
Ring.toSemiring
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
IsPurelyInseparable.tower_top
IsScalarTower.left
isScalarTower_mid'

IsPurelyInseparable

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_algebraMap_of_isSeparable 📖mathematicalFunction.Bijective
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
RingHom.instFunLike
algebraMap
FaithfulSMul.algebraMap_injective
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
surjective_algebraMap_of_isSeparable
bijective_comp_algebraMap 📖mathematicalFunction.Bijective
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
Semifield.toCommSemiring
RingHom.comp
algebraMap
injective_comp_algebraMap
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
AlgHomClass.toRingHomClass
AlgHom.algHomClass
instNonemptyAlgHomOfPerfectField
AlgHom.comp_algebraMap
bijective_restrictDomain 📖mathematicalFunction.Bijective
AlgHom
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
AlgHom.restrictDomain
injective_restrictDomain
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
instNonemptyAlgHomOfPerfectField
IsScalarTower.of_algHom
AlgHom.coe_ringHom_injective
AlgHom.comp_algebraMap
exists_pow_mem_range_tensorProduct 📖mathematicalTensorProduct
Semifield.toCommSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subring
Algebra.TensorProduct.instRing
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
algebraMap
Algebra.TensorProduct.instSemiring
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Algebra.to_smulCommClass
exists_pow_pow_mem_range_tensorProduct_of_expChar
ringExpChar.expChar
instIsDomain
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
expChar_is_prime_or_one
exists_pow_pow_mem_range_tensorProduct_of_expChar 📖mathematicalTensorProduct
Semifield.toCommSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subring
Algebra.TensorProduct.instRing
CommRing.toRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
algebraMap
Algebra.TensorProduct.instSemiring
Algebra.TensorProduct.leftAlgebra
Algebra.id
Algebra.to_smulCommClass
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Nat.instMonoid
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Algebra.to_smulCommClass
Zero.instNonempty
expChar_is_prime_or_one
TensorProduct.induction_on
TensorProduct.zero_tmul
pow_zero
pow_one
pow_mem
instIsDomain
IsScalarTower.right
Algebra.TensorProduct.tmul_mul_tmul
mul_one
one_mul
Algebra.TensorProduct.tmul_pow
Subring.mul_mem
IsScalarTower.algebraMap_apply
TensorProduct.isScalarTower_left
Algebra.TensorProduct.algebraMap_apply
Algebra.TensorProduct.tmul_one_eq_one_tmul
expChar_of_injective_ringHom
RingHom.injective
DivisionRing.isSimpleRing
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
Subalgebra.instSubsemiringClass
charZero_of_expChar_one'
EuclideanDomain.toNontrivial
Algebra.TensorProduct.includeLeft_surjective
surjective_algebraMap_of_isSeparable
Algebra.IsAlgebraic.isSeparable_of_perfectField
Normal.toIsAlgebraic
normal
PerfectField.ofCharZero
finInsepDegree_eq 📖mathematicalField.finInsepDegree
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
insepDegree_eq
finSepDegree_eq_one 📖mathematicalField.finSepDegreeNat.card_unique
instNonemptyAlgHomOfPerfectField
IsAlgClosed.perfectField
AlgebraicClosure.isAlgClosed
instSubsingletonAlgHomOfIsPurelyInseparable
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
finrank_eq_pow 📖mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Monoid.toNatPow
Nat.instMonoid
pow_zero
IsScalarTower.left
IntermediateField.finrank_bot
IntermediateField.finrank_top'
SetLike.exists_of_lt
instIsConcreteLE
lt_of_le_of_ne
bot_le
minpoly_eq_X_pow_sub_C
IntermediateField.adjoin.finrank
Algebra.IsIntegral.isIntegral
isIntegral
Polynomial.natDegree_sub_C
Polynomial.natDegree_X_pow
EuclideanDomain.toNontrivial
Module.finrank_mul_finrank
IntermediateField.isScalarTower_mid'
commRing_strongRankCondition
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Module.Free.of_divisionRing
Module.finrank_pos
IntermediateField.finiteDimensional_right
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IntermediateField.finrank_adjoin_simple_eq_one_iff
le_antisymm
LT.lt.ne'
IntermediateField.finiteDimensional_left
IntermediateField.expChar
IntermediateField.isPurelyInseparable_tower_top
pow_add
IntermediateField.finrank_bot'
injective_comp_algebraMap 📖mathematicalRingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
Semifield.toCommSemiring
RingHom.comp
algebraMap
RingHom.ext
pow_mem
instIsDomain
ringExpChar.expChar
Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
expChar_of_injective_ringHom
RingHom.injective
DivisionRing.isSimpleRing
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
injective_restrictDomain 📖mathematicalAlgHom
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
CommRing.toCommSemiring
AlgHom.restrictDomain
AlgHom.coe_ringHom_injective
injective_comp_algebraMap
AlgHomClass.toRingHomClass
AlgHom.algHomClass
insepDegree_eq 📖mathematicalField.insepDegree
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Field.insepDegree.eq_1
separableClosure.eq_bot_of_isPurelyInseparable
IntermediateField.rank_bot'
inseparable 📖mathematicalIsSeparableSubring
SetLike.instMembership
Subring.instSetLike
RingHom.range
CommRing.toRing
algebraMap
CommRing.toCommSemiring
Ring.toSemiring
inseparable'
inseparable' 📖mathematicalIsSeparableSubring
SetLike.instMembership
Subring.instSetLike
RingHom.range
CommRing.toRing
algebraMap
CommRing.toCommSemiring
Ring.toSemiring
instNonemptyAlgHomOfPerfectField 📖mathematicalAlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.nonempty_algHom_of_splits
isIntegral'
ExpChar.exists
instIsDomain
PerfectField.splits_of_natSepDegree_eq_one
minpoly.natSepDegree_eq_one_iff_eq_X_pow_sub_C
minpoly_eq_X_pow_sub_C
isAlgebraic 📖mathematicalAlgebra.IsAlgebraicAlgebra.IsIntegral.isAlgebraic
isIntegral
isIntegral 📖mathematicalAlgebra.IsIntegral
isIntegral' 📖mathematicalIsIntegralAlgebra.IsIntegral.isIntegral
isIntegral
minpoly_eq_X_pow_sub_C 📖mathematicalminpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Nat.instMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
isPurelyInseparable_iff_minpoly_eq_X_pow_sub_C
minpoly_eq_X_sub_C_pow 📖mathematicalPolynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Nat.instMonoid
isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow
natSepDegree_eq_one 📖mathematicalPolynomial.natSepDegree
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
isPurelyInseparable_iff_natSepDegree_eq_one
normal 📖mathematicalNormalisAlgebraic
EuclideanDomain.toNontrivial
minpoly_eq_X_sub_C_pow
ringExpChar.expChar
instIsDomain
Polynomial.Splits.pow
Polynomial.Splits.X_sub_C
of_injective_comp_algebraMap 📖mathematicalRingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
Semifield.toCommSemiring
RingHom.comp
algebraMap
IsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
isPurelyInseparable_iff_finSepDegree_eq_one
Field.finSepDegree.eq_1
Nat.card_eq_one_iff_unique
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
AlgebraicClosure.isAlgebraic
DFunLike.ext'
Function.Injective.comp_left
RingHom.injective
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
AlgHomClass.toRingHomClass
AlgHom.algHomClass
RingHom.ext
AlgHom.commutes
pow_mem 📖mathematicalSubring
SetLike.instMembership
Subring.instSetLike
RingHom.range
DivisionRing.toRing
Field.toDivisionRing
algebraMap
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Nat.instMonoid
isPurelyInseparable_iff_pow_mem
sepDegree_eq_one 📖mathematicalField.sepDegree
Cardinal
Cardinal.instOne
Field.sepDegree.eq_1
separableClosure.eq_bot_of_isPurelyInseparable
IsScalarTower.left
IntermediateField.rank_bot
surjective_algebraMap_of_isSeparable 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
Ring.toSemiring
RingHom.instFunLike
algebraMap
inseparable
Algebra.IsSeparable.isSeparable
tower_bot 📖mathematicalIsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IsIntegral.tower_bot_of_field
EuclideanDomain.toNontrivial
isIntegral'
inseparable
minpoly.algebraMap_eq
RingHom.injective
DivisionRing.isSimpleRing
IsSeparable.eq_1
IsScalarTower.algebraMap_apply
tower_top 📖mathematicalIsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
ExpChar.exists
instIsDomain
isPurelyInseparable_iff_pow_mem
expChar_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
IsScalarTower.algebraMap_apply
trans 📖mathematicalIsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
ExpChar.exists
instIsDomain
isPurelyInseparable_iff_pow_mem
expChar_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
IsScalarTower.algebraMap_apply
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
pow_mul
pow_add

Subalgebra

Definitions

NameCategoryTheorems
perfectClosure 📖CompOp
1 mathmath: mem_perfectClosure_iff

Theorems

NameKindAssumesProvesValidatesDepends On
eq_bot_of_isPurelyInseparable_of_isSeparable 📖mathematicalBot.bot
Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
bot_unique
IsPurelyInseparable.surjective_algebraMap_of_isSeparable
mem_perfectClosure_iff 📖mathematicalSubalgebra
CommSemiring.toSemiring
SetLike.instMembership
instSetLike
perfectClosure
Subsemiring
Semiring.toNonAssocSemiring
Subsemiring.instSetLike
RingHom.rangeS
algebraMap
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Nat.instMonoid

(root)

Definitions

NameCategoryTheorems
IsPurelyInseparable 📖CompData
33 mathmath: IsPurelyInseparable.instOfHasExponent, isPurelyInseparable_iff_fd_isPurelyInseparable, isPurelyInseparable_iff_pow_mem, IntermediateField.isPurelyInseparable_tower_bot, eq_separableClosure_iff, isPurelyInseparable_iff_natSepDegree_eq_one, AlgEquiv.isPurelyInseparable, IntermediateField.isPurelyInseparable_adjoin_iff_pow_mem, isPurelyInseparable_self, IsPRadical.isPurelyInseparable, isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow, IsPurelyInseparable.trans, isPurelyInseparable_iff_minpoly_eq_X_pow_sub_C, IsPurelyInseparable.tower_bot, isPurelyInseparable_iff_perfectClosure_eq_top, isPurelyInseparable_iff, isPurelyInseparable_iff_finSepDegree_eq_one, isPurelyInseparable_of_finSepDegree_eq_one, IntermediateField.isPurelyInseparable_bot, le_perfectClosure_iff, AlgEquiv.isPurelyInseparable_iff, isSepClosed_iff_isPurelyInseparable_algebraicClosure, IsPurelyInseparable.of_injective_comp_algebraMap, separableClosure_le_iff, IntermediateField.isPurelyInseparable_tower_top, Algebra.IsAlgebraic.isPurelyInseparable_of_isSepClosed, IntermediateField.isPurelyInseparable_adjoin_simple_iff_natSepDegree_eq_one, separableClosure.eq_bot_iff, IntermediateField.isPurelyInseparable_sup, separableClosure.isPurelyInseparable, IntermediateField.isPurelyInseparable_adjoin_simple_iff_pow_mem, perfectClosure.isPurelyInseparable, IsPurelyInseparable.tower_top
instUniqueAlgHomOfIsPurelyInseparable 📖CompOp
instUniqueEmbOfIsPurelyInseparable 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
eq_separableClosure 📖mathematicalseparableClosureIsScalarTower.left
le_antisymm
le_separableClosure
separableClosure_le
eq_separableClosure_iff 📖mathematicalseparableClosure
Algebra.IsSeparable
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsPurelyInseparable
IntermediateField.instAlgebraSubtypeMem
Ring.toSemiring
IsScalarTower.left
separableClosure.isSeparable
separableClosure.isPurelyInseparable
eq_separableClosure
finInsepDegree_eq_pow 📖mathematicalField.finInsepDegree
Monoid.toNatPow
Nat.instMonoid
IsPurelyInseparable.finrank_eq_pow
IntermediateField.expChar
separableClosure.isPurelyInseparable
Algebra.IsAlgebraic.of_finite
EuclideanDomain.toNontrivial
IntermediateField.finiteDimensional_right
instSubsingletonAlgHomOfIsPurelyInseparable 📖mathematicalAlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
AlgHom.coe_ringHom_injective
IsPurelyInseparable.injective_comp_algebraMap
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
isPurelyInseparable_iff 📖mathematicalIsPurelyInseparable
IsIntegral
Subring
SetLike.instMembership
Subring.instSetLike
RingHom.range
CommRing.toRing
algebraMap
CommRing.toCommSemiring
Ring.toSemiring
IsPurelyInseparable.isIntegral'
IsPurelyInseparable.inseparable'
isPurelyInseparable_iff_fd_isPurelyInseparable 📖mathematicalIsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
IsPurelyInseparable.tower_bot
IntermediateField.isScalarTower_mid'
isPurelyInseparable_iff
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
IsPurelyInseparable.inseparable'
IntermediateField.adjoin.finiteDimensional
IntermediateField.minpoly_eq
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
isPurelyInseparable_iff_finSepDegree_eq_one 📖mathematicalIsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Field.finSepDegree
IsPurelyInseparable.finSepDegree_eq_one
isPurelyInseparable_of_finSepDegree_eq_one
isPurelyInseparable_iff_minpoly_eq_X_pow_sub_C 📖mathematicalIsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
minpoly
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instSub
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Nat.instMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
minpoly.natSepDegree_eq_one_iff_eq_X_pow_sub_C
instIsDomain
isPurelyInseparable_iff_minpoly_eq_X_sub_C_pow 📖mathematicalIsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
algebraMap
minpoly
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Nat.instMonoid
minpoly.natSepDegree_eq_one_iff_eq_X_sub_C_pow
instIsDomain
isPurelyInseparable_iff_natSepDegree_eq_one 📖mathematicalIsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.natSepDegree
minpoly
ExpChar.exists
instIsDomain
isPurelyInseparable_iff_pow_mem
minpoly.natSepDegree_eq_one_iff_pow_mem
isPurelyInseparable_iff_pow_mem 📖mathematicalIsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subring
SetLike.instMembership
Subring.instSetLike
RingHom.range
DivisionRing.toRing
Field.toDivisionRing
algebraMap
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Nat.instMonoid
isPurelyInseparable_iff
Irreducible.hasSeparableContraction
minpoly.irreducible
instIsDomain
Polynomial.Separable.of_dvd
minpoly.dvd
Polynomial.expand_aeval
minpoly.aeval
minpoly.natSepDegree_eq_one_iff_pow_mem
by_contra
minpoly.eq_zero
Polynomial.natSepDegree_zero
minpoly.natDegree_eq_one_iff
IsDomain.toNontrivial
Polynomial.Separable.natSepDegree_eq_natDegree
isPurelyInseparable_of_finSepDegree_eq_one 📖mathematicalField.finSepDegreeIsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
isPurelyInseparable_iff
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
IsScalarTower.left
Field.finSepDegree_mul_finSepDegree_of_isAlgebraic
IntermediateField.isScalarTower_mid'
IntermediateField.isAlgebraic_tower_top
IntermediateField.finrank_eq_one_iff
IntermediateField.finSepDegree_adjoin_simple_eq_finrank_iff
Algebra.IsAlgebraic.isAlgebraic
mul_eq_one
Unique.instSubsingleton
IntermediateField.mem_adjoin_simple_self
Field.finSepDegree_eq_zero_of_transcendental
Algebra.transcendental_iff_not_isAlgebraic
isPurelyInseparable_self 📖mathematicalIsPurelyInseparable
CommRing.toRing
Algebra.id
CommRing.toCommSemiring
Algebra.IsIntegral.of_finite
Module.Finite.self
isSepClosed_iff_isPurelyInseparable_algebraicClosure 📖mathematicalIsSepClosed
IsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
Algebra.IsAlgebraic.isPurelyInseparable_of_isSepClosed
IsAlgClosure.isAlgebraic
IsSepClosed.separableClosure_eq_bot_iff
IsSepClosed.of_isAlgClosed
IsAlgClosure.isAlgClosed
separableClosure.eq_bot_iff
isSeparable_iff_finInsepDegree_eq_one 📖mathematicalAlgebra.IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Field.finInsepDegree
separableClosure.eq_top_iff
IntermediateField.finrank_eq_one_iff_eq_top
Field.finInsepDegree.eq_1
separableClosure_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
separableClosure
IsPurelyInseparable.inseparable'
IsSeparable.tower_top
IsScalarTower.left
IntermediateField.isScalarTower_mid'
mem_separableClosure_iff
separableClosure_le_iff 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
separableClosure
IsPurelyInseparable
SetLike.instMembership
IntermediateField.instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.toField
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.instAlgebraSubtypeMem
Ring.toSemiring
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
IsPurelyInseparable.tower_top
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
IsScalarTower.of_algebraMap_eq
separableClosure.isPurelyInseparable
separableClosure_le

separableClosure

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_eq_of_isAlgebraic 📖mathematicalIntermediateField.adjoin
SetLike.coe
IntermediateField
IntermediateField.instSetLike
separableClosure
IsScalarTower.left
adjoin_eq_of_isAlgebraic_of_isSeparable
IntermediateField.isScalarTower
isSeparable
IntermediateField.lift_adjoin
IntermediateField.lift_top
IsScalarTower.of_algebraMap_eq
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
map_eq_of_separableClosure_eq_bot
separableClosure_eq_bot
Set.image_congr
adjoin_eq_of_isAlgebraic_of_isSeparable 📖mathematicalIntermediateField.adjoin
SetLike.coe
IntermediateField
IntermediateField.instSetLike
separableClosure
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
top_unique
Algebra.isSeparable_tower_top_of_isSeparable
IsScalarTower.left
IntermediateField.isScalarTower_mid'
IntermediateField.subset_adjoin
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.of_algebraMap_eq
Algebra.IsAlgebraic.trans
IsDomain.to_noZeroDivisors
instIsDomain
Algebra.IsSeparable.isAlgebraic
EuclideanDomain.toNontrivial
isPurelyInseparable
IsPurelyInseparable.tower_top
IsPurelyInseparable.surjective_algebraMap_of_isSeparable
eq_bot_iff 📖mathematicalseparableClosure
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
isPurelyInseparable_iff
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
mem_separableClosure_iff
eq_bot_of_isPurelyInseparable
eq_bot_of_isPurelyInseparable 📖mathematicalseparableClosure
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
bot_unique
IsPurelyInseparable.inseparable
mem_separableClosure_iff
isPurelyInseparable 📖mathematicalIsPurelyInseparable
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
separableClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.toField
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.instAlgebraSubtypeMem
Ring.toSemiring
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
isPurelyInseparable_iff
IsAlgebraic.isIntegral
IsAlgebraic.tower_top
IsScalarTower.left
IntermediateField.isScalarTower_mid'
Algebra.IsAlgebraic.isAlgebraic
IntermediateField.mem_adjoin_simple_self
mem_separableClosure_iff
IntermediateField.isSeparable_of_mem_isSeparable
Algebra.IsSeparable.trans
IntermediateField.instIsScalarTowerSubtypeMem_1
IsScalarTower.right
isSeparable
IntermediateField.isSeparable_adjoin_simple_iff_isSeparable

---

← Back to Index