Documentation Verification Report

PerfectClosure

📁 Source: Mathlib/FieldTheory/PurelyInseparable/PerfectClosure.lean

Statistics

MetricCount
DefinitionsperfectClosure, mapPowExpCharPowOfIsSeparable, PerfectClosure, perfectClosure, algEquivOfAlgEquiv
5
Theoremsspan_map_pow_expChar_pow_eq_top_of_isSeparable, adjoin_eq_adjoin_pow_expChar_of_isSeparable, adjoin_eq_adjoin_pow_expChar_of_isSeparable', adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable, adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable', adjoin_simple_eq_adjoin_pow_expChar_of_isSeparable, adjoin_simple_eq_adjoin_pow_expChar_of_isSeparable', adjoin_simple_eq_adjoin_pow_expChar_pow_of_isSeparable, adjoin_simple_eq_adjoin_pow_expChar_pow_of_isSeparable', isPurelyInseparable_adjoin_iff_pow_mem, isPurelyInseparable_adjoin_simple_iff_natSepDegree_eq_one, isPurelyInseparable_adjoin_simple_iff_pow_mem, isPurelyInseparable_iSup, isPurelyInseparable_sup, map_pow_expChar_pow_of_isSeparable, map_pow_expChar_pow_of_isSeparable', isPurelyInseparable_iff_perfectClosure_eq_top, le_perfectClosure, le_perfectClosure_iff, map_mem_perfectClosure_iff, mem_perfectClosure_iff, mem_perfectClosure_iff_natSepDegree_eq_one, mem_perfectClosure_iff_pow_mem, frobenius_of_isSeparable, iterateFrobenius_of_isSeparable, comap_eq_of_algHom, eq_bot_of_isSeparable, isAlgebraic, isPurelyInseparable, map_eq_of_algEquiv, map_le_of_algHom, perfectField, perfectRing, perfectField_iff_isSeparable_algebraicClosure, perfectField_of_isSeparable_of_perfectField_top, perfectField_of_perfectClosure_eq_bot, separableClosure_inf_perfectClosure
37
Total42

AlgEquiv

Definitions

NameCategoryTheorems
perfectClosure 📖CompOp

Field

Theorems

NameKindAssumesProvesValidatesDepends On
span_map_pow_expChar_pow_eq_top_of_isSeparable 📖mathematicalSubmodule.span
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Set.range
Top.top
Submodule
Submodule.instTop
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Nat.instMonoid
Algebra.top_toSubmodule
IntermediateField.top_toSubalgebra
IntermediateField.adjoin_univ
IntermediateField.adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable'
IntermediateField.adjoin_toSubalgebra_of_isAlgebraic
Algebra.IsAlgebraic.isAlgebraic
Algebra.IsSeparable.isAlgebraic
EuclideanDomain.toNontrivial
Set.image_univ
Algebra.adjoin_eq_span
MonoidHom.instMonoidHomClass
Submonoid.closure_eq
mul_pow
LE.le.antisymm
Submodule.span_mono
Set.range_comp_subset_range
Submodule.span_le
Set.range_comp
expChar_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
Submodule.image_span_subset_span

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_eq_adjoin_pow_expChar_of_isSeparable 📖mathematicaladjoin
Set.image
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsScalarTower.left
adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable
pow_one
adjoin_eq_adjoin_pow_expChar_of_isSeparable' 📖mathematicaladjoin
Set.image
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable'
pow_one
adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable 📖mathematicaladjoin
Set.image
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Nat.instMonoid
IsScalarTower.left
adjoin_le_iff
pow_mem
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
subset_adjoin
isScalarTower_mid'
restrictScalars_bot_eq_self
eq_bot_of_isPurelyInseparable_of_isSeparable
extendScalars_adjoin
isPurelyInseparable_adjoin_iff_pow_mem
expChar
Algebra.isSeparable_tower_top_of_isSeparable
IsScalarTower.of_algHom
adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable' 📖mathematicaladjoin
Set.image
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Nat.instMonoid
adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable
Algebra.isSeparable_tower_bot_of_isSeparable
IsScalarTower.left
EuclideanDomain.toNontrivial
isScalarTower_mid'
adjoin_simple_eq_adjoin_pow_expChar_of_isSeparable 📖mathematicalIsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
adjoin
Set
Set.instSingletonSet
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
adjoin_simple_eq_adjoin_pow_expChar_pow_of_isSeparable
pow_one
adjoin_simple_eq_adjoin_pow_expChar_of_isSeparable' 📖mathematicaladjoin
Set
Set.instSingletonSet
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
adjoin_simple_eq_adjoin_pow_expChar_pow_of_isSeparable'
pow_one
adjoin_simple_eq_adjoin_pow_expChar_pow_of_isSeparable 📖mathematicalIsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
adjoin
Set
Set.instSingletonSet
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Nat.instMonoid
Set.image_singleton
adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable
IsScalarTower.left
isSeparable_adjoin_simple_iff_isSeparable
adjoin_simple_eq_adjoin_pow_expChar_pow_of_isSeparable' 📖mathematicaladjoin
Set
Set.instSingletonSet
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Nat.instMonoid
Set.image_singleton
adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable
isSeparable_tower_bot
isPurelyInseparable_adjoin_iff_pow_mem 📖mathematicalIsPurelyInseparable
IntermediateField
SetLike.instMembership
instSetLike
adjoin
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Subring
Subring.instSetLike
RingHom.range
algebraMap
Monoid.toNatPow
Nat.instMonoid
IsScalarTower.left
mem_perfectClosure_iff_pow_mem
isPurelyInseparable_adjoin_simple_iff_natSepDegree_eq_one 📖mathematicalIsPurelyInseparable
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Polynomial.natSepDegree
minpoly
IsScalarTower.left
le_perfectClosure_iff
adjoin_simple_le_iff
mem_perfectClosure_iff_natSepDegree_eq_one
isPurelyInseparable_adjoin_simple_iff_pow_mem 📖mathematicalIsPurelyInseparable
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Subring
Subring.instSetLike
RingHom.range
algebraMap
Monoid.toNatPow
Nat.instMonoid
IsScalarTower.left
le_perfectClosure_iff
adjoin_simple_le_iff
mem_perfectClosure_iff_pow_mem
isPurelyInseparable_iSup 📖mathematicalIsPurelyInseparable
IntermediateField
SetLike.instMembership
instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
IsScalarTower.left
iSup_le
isPurelyInseparable_sup 📖mathematicalIsPurelyInseparable
IntermediateField
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
le_perfectClosure_iff
sup_le

LinearIndependent

Theorems

NameKindAssumesProvesValidatesDepends On
map_pow_expChar_pow_of_isSeparable 📖mathematicalLinearIndependent
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Nat.instMonoid
linearIndependent_iff_finset_linearIndependent
IntermediateField.subset_adjoin
Finset.mem_image
IsScalarTower.left
of_comp
map'
IntermediateField.finiteDimensional_adjoin
Finite.of_fintype
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
Algebra.IsSeparable.isAlgebraic
EuclideanDomain.toNontrivial
IntermediateField.isSeparable_tower_bot
LinearMap.ker_eq_bot_of_injective
RingHom.injective
DivisionRing.isSimpleRing
map_pow_expChar_pow_of_isSeparable' 📖mathematicalIsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
LinearIndependent
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semifield.toCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Nat.instMonoid
IntermediateField.subset_adjoin
IsScalarTower.left
of_comp
map'
map_pow_expChar_pow_of_isSeparable
IntermediateField.isSeparable_adjoin_iff_isSeparable
LinearMap.ker_eq_bot_of_injective
RingHom.injective
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial

Module.Basis

Definitions

NameCategoryTheorems
mapPowExpCharPowOfIsSeparable 📖CompOp

(root)

Definitions

NameCategoryTheorems
PerfectClosure 📖CompOp
22 mathmath: PerfectClosure.mk_mul_mk, PerfectClosure.frobenius_mk, PerfectClosure.instCharP, PerfectClosure.instPerfectRing, PerfectClosure.instNontrivialOfIsReduced, PerfectClosure.mk_add_mk, PerfectClosure.neg_mk, PerfectClosure.natCast_eq_iff, PerfectClosure.of_apply, PerfectClosure.intCast, PerfectClosure.mk_zero_right, PerfectClosure.mk_surjective, PerfectClosure.instPerfectField, PerfectClosure.isPRadical, PerfectClosure.zero_def, PerfectClosure.iterate_frobenius_mk, PerfectClosure.instReduced, PerfectClosure.mk_inv, PerfectClosure.mk_pow, PerfectClosure.mk_zero, PerfectClosure.one_def, PerfectClosure.natCast
perfectClosure 📖CompOp
16 mathmath: mem_perfectClosure_iff_natSepDegree_eq_one, perfectClosure.map_le_of_algHom, mem_perfectClosure_iff_pow_mem, map_mem_perfectClosure_iff, mem_perfectClosure_iff, le_perfectClosure, separableClosure_inf_perfectClosure, isPurelyInseparable_iff_perfectClosure_eq_top, le_perfectClosure_iff, perfectClosure.isAlgebraic, perfectClosure.perfectField, perfectClosure.eq_bot_of_isSeparable, perfectClosure.map_eq_of_algEquiv, perfectClosure.perfectRing, perfectClosure.comap_eq_of_algHom, perfectClosure.isPurelyInseparable

Theorems

NameKindAssumesProvesValidatesDepends On
isPurelyInseparable_iff_perfectClosure_eq_top 📖mathematicalIsPurelyInseparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
perfectClosure
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
isPurelyInseparable_iff_pow_mem
instIsDomain
ringExpChar.expChar
top_unique
Eq.ge
le_perfectClosure 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
perfectClosure
IsScalarTower.left
isPurelyInseparable_iff_pow_mem
instIsDomain
ringExpChar.expChar
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
le_perfectClosure_iff 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
perfectClosure
IsPurelyInseparable
SetLike.instMembership
IntermediateField.instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
isPurelyInseparable_iff_pow_mem
instIsDomain
ringExpChar.expChar
RingHom.injective
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
le_perfectClosure
map_mem_perfectClosure_iff 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
perfectClosure
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
RingHom.injective
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
AlgHom.commutes
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
mem_perfectClosure_iff 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
perfectClosure
Subring
DivisionRing.toRing
Field.toDivisionRing
Subring.instSetLike
RingHom.range
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Nat.instMonoid
ringExpChar
Semiring.toNonAssocSemiring
mem_perfectClosure_iff_natSepDegree_eq_one 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
perfectClosure
Polynomial.natSepDegree
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
mem_perfectClosure_iff
minpoly.natSepDegree_eq_one_iff_pow_mem
instIsDomain
ringExpChar.expChar
mem_perfectClosure_iff_pow_mem 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
perfectClosure
Subring
DivisionRing.toRing
Field.toDivisionRing
Subring.instSetLike
RingHom.range
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Nat.instMonoid
mem_perfectClosure_iff
ringExpChar.eq
perfectField_iff_isSeparable_algebraicClosure 📖mathematicalPerfectField
Algebra.IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
IsSepClosure.separable
IsSepClosure.of_isAlgClosure_of_perfectField
perfectField_of_isSeparable_of_perfectField_top
IsAlgClosed.perfectField
IsAlgClosure.isAlgClosed
perfectField_of_isSeparable_of_perfectField_top 📖mathematicalPerfectFieldperfectField_of_perfectClosure_eq_bot
perfectClosure.eq_bot_of_isSeparable
perfectField_of_perfectClosure_eq_bot 📖mathematicalperfectClosure
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
PerfectFieldPerfectRing.toPerfectField
ringExpChar.expChar
instIsDomain
PerfectRing.ofSurjective
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
expChar_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
surjective_frobenius
PerfectField.toPerfectRing
pow_one
frobenius_def
ringExpChar.eq
RingHom.map_frobenius
separableClosure_inf_perfectClosure 📖mathematicalIntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
separableClosure
perfectClosure
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IntermediateField.eq_bot_of_isPurelyInseparable_of_isSeparable
IsScalarTower.left
le_perfectClosure_iff
inf_le_right
le_separableClosure_iff
inf_le_left

minpoly

Theorems

NameKindAssumesProvesValidatesDepends On
frobenius_of_isSeparable 📖mathematicalIsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
minpoly
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
RingHom.instFunLike
frobenius
Polynomial.map
iterateFrobenius_one
iterateFrobenius_of_isSeparable
iterateFrobenius_of_isSeparable 📖mathematicalIsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
minpoly
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
RingHom.instFunLike
iterateFrobenius
Polynomial.map
IsSeparable.isIntegral
IsIntegral.pow
Polynomial.eq_of_monic_of_dvd_of_natDegree_le
monic
Polynomial.Monic.map
dvd
aeval
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.map_aeval_eq_aeval_map
RingHom.iterateFrobenius_comm
Polynomial.natDegree_map_eq_of_injective
RingHom.injective
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
IsScalarTower.left
IntermediateField.adjoin.finrank
IntermediateField.adjoin_simple_eq_adjoin_pow_expChar_pow_of_isSeparable
iterateFrobenius_def
le_refl

perfectClosure

Definitions

NameCategoryTheorems
algEquivOfAlgEquiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
comap_eq_of_algHom 📖mathematicalIntermediateField.comap
perfectClosure
IntermediateField.ext
map_mem_perfectClosure_iff
eq_bot_of_isSeparable 📖mathematicalperfectClosure
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IntermediateField.eq_bot_of_isPurelyInseparable_of_isSeparable
isPurelyInseparable
Algebra.isSeparable_tower_bot_of_isSeparable
IsScalarTower.left
EuclideanDomain.toNontrivial
IntermediateField.isScalarTower_mid'
isAlgebraic 📖mathematicalAlgebra.IsAlgebraic
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
perfectClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsPurelyInseparable.isAlgebraic
IsScalarTower.left
EuclideanDomain.toNontrivial
isPurelyInseparable
isPurelyInseparable 📖mathematicalIsPurelyInseparable
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
perfectClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
isPurelyInseparable_iff_pow_mem
instIsDomain
ringExpChar.expChar
RingHom.injective
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
map_eq_of_algEquiv 📖mathematicalIntermediateField.map
AlgEquiv.toAlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
perfectClosure
LE.le.antisymm
map_le_of_algHom
map_mem_perfectClosure_iff
Equiv.right_inv
map_le_of_algHom 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
IntermediateField.map
perfectClosure
IntermediateField.map_le_iff_le_comap
Eq.ge
comap_eq_of_algHom
perfectField 📖mathematicalPerfectField
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
perfectClosure
IntermediateField.toField
PerfectRing.toPerfectField
IntermediateField.expChar'
ringExpChar.expChar
instIsDomain
perfectRing
PerfectField.toPerfectRing
perfectRing 📖mathematicalPerfectRing
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
perfectClosure
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.expChar'
PerfectRing.ofSurjective
IntermediateField.expChar'
isReduced_of_noZeroDivisors
SubsemiringClass.noZeroDivisors
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsDomain.to_noZeroDivisors
instIsDomain
surjective_frobenius
mem_perfectClosure_iff_pow_mem
RingHom.expChar
RingHom.injective
DivisionRing.isSimpleRing
EuclideanDomain.toNontrivial
pow_succ'
pow_mul
frobenius_def
pow_mem
SubsemiringClass.toSubmonoidClass

---

← Back to Index