Theoremsspan_map_pow_expChar_pow_eq_top_of_isSeparable, adjoin_eq_adjoin_pow_expChar_of_isSeparable, adjoin_eq_adjoin_pow_expChar_of_isSeparable', adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable, adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable', adjoin_simple_eq_adjoin_pow_expChar_of_isSeparable, adjoin_simple_eq_adjoin_pow_expChar_of_isSeparable', adjoin_simple_eq_adjoin_pow_expChar_pow_of_isSeparable, adjoin_simple_eq_adjoin_pow_expChar_pow_of_isSeparable', isPurelyInseparable_adjoin_iff_pow_mem, isPurelyInseparable_adjoin_simple_iff_natSepDegree_eq_one, isPurelyInseparable_adjoin_simple_iff_pow_mem, isPurelyInseparable_iSup, isPurelyInseparable_sup, map_pow_expChar_pow_of_isSeparable, map_pow_expChar_pow_of_isSeparable', isPurelyInseparable_iff_perfectClosure_eq_top, le_perfectClosure, le_perfectClosure_iff, map_mem_perfectClosure_iff, mem_perfectClosure_iff, mem_perfectClosure_iff_natSepDegree_eq_one, mem_perfectClosure_iff_pow_mem, frobenius_of_isSeparable, iterateFrobenius_of_isSeparable, comap_eq_of_algHom, eq_bot_of_isSeparable, isAlgebraic, isPurelyInseparable, map_eq_of_algEquiv, map_le_of_algHom, perfectField, perfectRing, perfectField_iff_isSeparable_algebraicClosure, perfectField_of_isSeparable_of_perfectField_top, perfectField_of_perfectClosure_eq_bot, separableClosure_inf_perfectClosure | 37 |