Documentation Verification Report

Tower

πŸ“ Source: Mathlib/FieldTheory/PurelyInseparable/Tower.lean

Statistics

MetricCount
Definitions0
TheoremsfinInsepDegree_mul_finInsepDegree_of_isAlgebraic, insepDegree_eq_of_isSeparable, insepDegree_mul_insepDegree_of_isAlgebraic, lift_insepDegree_mul_lift_insepDegree_of_isAlgebraic, lift_rank_mul_lift_insepDegree_of_isPurelyInseparable, lift_rank_mul_lift_sepDegree_of_isSeparable, lift_sepDegree_mul_lift_sepDegree_of_isAlgebraic, rank_mul_insepDegree_of_isPurelyInseparable, rank_mul_sepDegree_of_isSeparable, sepDegree_eq_of_isPurelyInseparable, sepDegree_eq_of_isPurelyInseparable_of_isSeparable, sepDegree_mul_sepDegree_of_isAlgebraic, linearDisjoint_of_isPurelyInseparable_of_isSeparable, sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable, sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable', map_of_isPurelyInseparable_of_isSeparable, map_irreducible_of_isPurelyInseparable, map_eq_of_isSeparable_of_isPurelyInseparable
18
Total18

Field

Theorems

NameKindAssumesProvesValidatesDepends On
finInsepDegree_mul_finInsepDegree_of_isAlgebraic πŸ“–mathematicalβ€”finInsepDegreeβ€”map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
Cardinal.toNat_lift
lift_insepDegree_mul_lift_insepDegree_of_isAlgebraic
insepDegree_eq_of_isSeparable πŸ“–mathematicalβ€”insepDegreeβ€”insepDegree.eq_1
separableClosure.eq_restrictScalars_of_isSeparable
insepDegree_mul_insepDegree_of_isAlgebraic πŸ“–mathematicalβ€”Cardinal
Cardinal.instMul
insepDegree
β€”Cardinal.lift_id
lift_insepDegree_mul_lift_insepDegree_of_isAlgebraic
lift_insepDegree_mul_lift_insepDegree_of_isAlgebraic πŸ“–mathematicalβ€”Cardinal
Cardinal.instMul
Cardinal.lift
insepDegree
β€”lift_rank_mul_lift_insepDegree_of_isPurelyInseparable
IntermediateField.isScalarTower_bot
separableClosure.isPurelyInseparable
insepDegree_eq_of_isSeparable
IsScalarTower.left
IntermediateField.isScalarTower_mid
separableClosure.isSeparable
lift_rank_mul_lift_insepDegree_of_isPurelyInseparable πŸ“–mathematicalβ€”Cardinal
Cardinal.instMul
Cardinal.lift
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
insepDegree
β€”IntermediateField.LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic_left
IntermediateField.linearDisjoint_of_isPurelyInseparable_of_isSeparable
separableClosure.isSeparable
separableClosure.isAlgebraic
separableClosure.adjoin_eq_of_isAlgebraic
Normal.toIsAlgebraic
IsPurelyInseparable.normal
lift_rank_mul_lift_sepDegree_of_isSeparable πŸ“–mathematicalβ€”Cardinal
Cardinal.instMul
Cardinal.lift
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
sepDegree
β€”sepDegree.eq_1
separableClosure.eq_restrictScalars_of_isSeparable
lift_rank_mul_lift_rank
IsScalarTower.left
IntermediateField.isScalarTower
commRing_strongRankCondition
IsLocalRing.toNontrivial
instIsLocalRing
Module.Free.of_divisionRing
lift_sepDegree_mul_lift_sepDegree_of_isAlgebraic πŸ“–mathematicalβ€”Cardinal
Cardinal.instMul
Cardinal.lift
sepDegree
β€”IsScalarTower.left
lift_rank_mul_lift_sepDegree_of_isSeparable
IntermediateField.isScalarTower_mid
separableClosure.isSeparable
sepDegree_eq_of_isPurelyInseparable
IntermediateField.isScalarTower_bot
separableClosure.isPurelyInseparable
rank_mul_insepDegree_of_isPurelyInseparable πŸ“–mathematicalβ€”Cardinal
Cardinal.instMul
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
insepDegree
β€”Cardinal.lift_id
lift_rank_mul_lift_insepDegree_of_isPurelyInseparable
rank_mul_sepDegree_of_isSeparable πŸ“–mathematicalβ€”Cardinal
Cardinal.instMul
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
sepDegree
β€”Cardinal.lift_id
lift_rank_mul_lift_sepDegree_of_isSeparable
sepDegree_eq_of_isPurelyInseparable πŸ“–mathematicalβ€”sepDegreeβ€”IsScalarTower.left
sepDegree.eq_1
IsScalarTower.of_algebraMap_eq
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
separableClosure.map_eq_of_separableClosure_eq_bot
separableClosure.separableClosure_eq_bot
LinearEquiv.rank_eq
sepDegree_eq_of_isPurelyInseparable_of_isSeparable
IntermediateField.isScalarTower
separableClosure.isSeparable
sepDegree_eq_of_isPurelyInseparable_of_isSeparable πŸ“–mathematicalβ€”sepDegree
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”IsScalarTower.left
IntermediateField.LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic_left
IntermediateField.linearDisjoint_of_isPurelyInseparable_of_isSeparable
separableClosure.isSeparable
separableClosure.isAlgebraic
IntermediateField.rank_top'
separableClosure.adjoin_eq_of_isAlgebraic_of_isSeparable
Normal.toIsAlgebraic
IsPurelyInseparable.normal
sepDegree_mul_sepDegree_of_isAlgebraic πŸ“–mathematicalβ€”Cardinal
Cardinal.instMul
sepDegree
β€”Cardinal.lift_id
lift_sepDegree_mul_lift_sepDegree_of_isAlgebraic

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
linearDisjoint_of_isPurelyInseparable_of_isSeparable πŸ“–mathematicalβ€”LinearDisjointβ€”IsScalarTower.left
Module.Basis.exists_basis
LinearDisjoint.of_basis_left
LinearIndependent.map_of_isPurelyInseparable_of_isSeparable
minpoly_eq
Algebra.IsSeparable.isSeparable
LinearIndependent.map'
Module.Basis.linearIndependent
LinearMap.ker_eq_bot_of_injective
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable πŸ“–mathematicalβ€”Field.sepDegree
IntermediateField
SetLike.instMembership
instSetLike
adjoin
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
IsLocalRing.toNontrivial
Field.instIsLocalRing
isScalarTower_mid'
restrictScalars_adjoin_of_algEquiv
restrictScalars_adjoin
adjoin.mono
Set.subset_union_right
Field.lift_sepDegree_mul_lift_sepDegree_of_isAlgebraic
isScalarTower
Normal.toIsAlgebraic
IsPurelyInseparable.normal
Cardinal.lift_injective
one_mul
Cardinal.lift_one
IsPurelyInseparable.sepDegree_eq_one
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
Field.sepDegree_mul_sepDegree_of_isAlgebraic
IsScalarTower.of_algebraMap_eq
ExpChar.exists
instIsDomain
restrictScalars_injective
extendScalars_restrictScalars
adjoin_self
adjoin_adjoin_comm
isPurelyInseparable_adjoin_iff_pow_mem
expChar
IsPurelyInseparable.pow_mem
IsScalarTower.algebraMap_apply
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.toRingHom_eq_coe
IsScalarTower.coe_toAlgHom
mul_one
sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable' πŸ“–mathematicalβ€”Field.sepDegree
IntermediateField
SetLike.instMembership
instSetLike
adjoin
SetLike.coe
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
adjoin_self
sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable

LinearIndependent

Theorems

NameKindAssumesProvesValidatesDepends On
map_of_isPurelyInseparable_of_isSeparable πŸ“–β€”IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
LinearIndependent
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semifield.toCommSemiring
β€”β€”ExpChar.exists
instIsDomain
linearIndependent_iff
Finsupp.ext
LT.lt.ne'
expChar_pow_pos
pow_mul
pow_add
Finset.le_sup
pow_mem
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
Subring.instSubringClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Finsupp.notMem_support_iff
zero_pow
Mathlib.Tactic.Contrapose.contraposeβ‚‚
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_pow_expChar_pow_of_isSeparable'
sum_pow_char_pow
expChar_of_injective_algebraMap
Finsupp.sum.eq_1
Finsupp.linearCombination_apply
Finsupp.onFinset_sum
zero_smul
Finset.sum_congr
Algebra.smul_def
mul_pow
IsScalarTower.algebraMap_apply
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
isPurelyInseparable_iff_pow_mem

Polynomial.Separable

Theorems

NameKindAssumesProvesValidatesDepends On
map_irreducible_of_isPurelyInseparable πŸ“–mathematicalPolynomial.Separable
Semifield.toCommSemiring
Field.toSemifield
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.map
CommSemiring.toSemiring
algebraMap
β€”IsAlgClosed.exists_aeval_eq_zero
AlgebraicClosure.isAlgClosed
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
LT.lt.ne'
Polynomial.natDegree_pos_iff_degree_pos
Irreducible.natDegree_pos
Polynomial.isUnit_C
IsUnit.inv
Ne.isUnit
Polynomial.leadingCoeff_ne_zero
Irreducible.ne_zero
IsUnit.unit_spec
minpoly.eq_of_irreducible
Associated.map
MonoidHom.instMonoidHomClass
minpoly.map_eq_of_isSeparable_of_isPurelyInseparable
AlgebraicClosure.instIsScalarTower
IsScalarTower.right
Associated.separable
Associated.irreducible_iff
minpoly.irreducible
instIsDomain
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
AlgebraicClosure.isAlgebraic

minpoly

Theorems

NameKindAssumesProvesValidatesDepends On
map_eq_of_isSeparable_of_isPurelyInseparable πŸ“–mathematicalIsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
algebraMap
minpoly
β€”IsSeparable.isIntegral
IsIntegral.tower_top
Polynomial.eq_of_monic_of_dvd_of_natDegree_le
monic
Polynomial.Monic.map
dvd_map_of_isScalarTower
le_of_eq
IsSeparable.tower_top
IsScalarTower.left
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
IntermediateField.isSeparable_adjoin_simple_iff_isSeparable
Polynomial.natDegree_map
DivisionRing.isSimpleRing
IntermediateField.adjoin.finrank
Field.finSepDegree_eq_finrank_of_isSeparable
Field.finSepDegree_eq
IntermediateField.sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable

---

← Back to Index