Documentation Verification Report

AsPolynomial

πŸ“ Source: Mathlib/FieldTheory/RatFunc/AsPolynomial.lean

Statistics

MetricCount
DefinitionsidealX, C, X, eval, instValuedWithZeroMultiplicativeInt
5
TheoremsidealX_span, valuation_X_eq_neg_one, valuation_aeval_eq_valuation_X_pow_natDegree_of_one_lt_valuation_X, valuation_aeval_monomial_eq_valuation_pow, valuation_eq_valuation_X_pow_natDegree_of_one_lt_valuation_X, valuation_inv_monomial_eq_valuation_X_zpow, valuation_le_one_of_valuation_X_le_one, valuation_monomial_eq_valuation_X_pow, valuation_of_mk, C_injective, X_ne_zero, aeval_X_left_eq_algebraMap, algebraMap_C, algebraMap_X, algebraMap_comp_C, algebraMap_eq_C, algebraMap_monomial, denom_C, denom_X, eq_C_iff, eval_C, eval_X, eval_add, eval_algebraMap, eval_eq_zero_of_evalβ‚‚_denom_eq_zero, eval_mul, eval_one, eval_zero, evalβ‚‚_denom_ne_zero, liftRingHom_C, liftRingHom_X, num_C, num_X, smul_eq_C_mul, transcendental, transcendental_X, v_def
37
Total42

Polynomial

Definitions

NameCategoryTheorems
idealX πŸ“–CompOp
16 mathmath: idealX_span, LaurentSeries.LaurentSeriesRingEquiv_def, valuation_of_mk, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, PowerSeries.intValuation_eq_of_coe, RatFunc.valuation_eq_LaurentSeries_valuation, LaurentSeries.coe_X_compare, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, RatFunc.v_def, LaurentSeries.powerSeries_ext_subring, LaurentSeries.powerSeriesRingEquiv_coe_apply, LaurentSeries.valuation_compare, LaurentSeries.tendsto_valuation, LaurentSeries.ratfuncAdicComplRingEquiv_apply, LaurentSeries.mem_integers_of_powerSeries, valuation_X_eq_neg_one

Theorems

NameKindAssumesProvesValidatesDepends On
idealX_span πŸ“–mathematicalβ€”IsDedekindDomain.HeightOneSpectrum.asIdeal
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
idealX
Ideal.span
semiring
Set
Set.instSingletonSet
X
β€”β€”
valuation_X_eq_neg_one πŸ“–mathematicalβ€”DFunLike.coe
Valuation
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
instIsDomain
Field.toSemifield
Valuation.instFunLike
IsDedekindDomain.HeightOneSpectrum.valuation
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
commRing
IsPrincipalIdealRing.isDedekindDomain
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
EuclideanDomain.to_principal_ideal_domain
instEuclideanDomain
RatFunc.instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
RatFunc.instIsFractionRingPolynomial
idealX
RatFunc.X
WithZero.exp
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
instIsDomain
IsPrincipalIdealRing.isDedekindDomain
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
RatFunc.instIsFractionRingPolynomial
RatFunc.algebraMap_X
IsDedekindDomain.HeightOneSpectrum.valuation_of_algebraMap
IsDedekindDomain.HeightOneSpectrum.intValuation_singleton
X_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
idealX_span
valuation_aeval_eq_valuation_X_pow_natDegree_of_one_lt_valuation_X πŸ“–mathematicalDFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DivisionRing.toRing
Field.toDivisionRing
Valuation.instFunLike
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
LinearOrderedCommGroupWithZero.toCommGroupWithZero
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
Monoid.toNatPow
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
natDegree
β€”valuation_aeval_monomial_eq_valuation_pow
leadingCoeff_ne_zero
as_sum_range
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Valuation.map_sum_eq_of_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
aeval_C
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
aeval_X
MonoidHomClass.toMulHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
one_mul
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
lt_trans
zero_lt_one
NeZero.one
GroupWithZero.toNontrivial
pow_lt_pow_rightβ‚€
valuation_aeval_monomial_eq_valuation_pow πŸ“–mathematicalDFunLike.coe
Valuation
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DivisionRing.toRing
Field.toDivisionRing
Valuation.instFunLike
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
LinearOrderedCommGroupWithZero.toCommGroupWithZero
AlgHom
Polynomial
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
aeval
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Monoid.toNatPow
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
β€”map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
aeval_C
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
aeval_X
MonoidHomClass.toMulHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
one_mul
valuation_eq_valuation_X_pow_natDegree_of_one_lt_valuation_X πŸ“–mathematicalDFunLike.coe
Valuation
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
instIsDomain
Field.toSemifield
Valuation.instFunLike
RatFunc.coePolynomial
RingHom
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
LinearOrderedCommGroupWithZero.toCommGroupWithZero
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
RatFunc.X
Monoid.toNatPow
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
natDegree
β€”instIsDomain
RatFunc.X.eq_1
aeval_X_left_apply
aeval_algebraMap_apply
RatFunc.instIsScalarTowerPolynomial
valuation_aeval_eq_valuation_X_pow_natDegree_of_one_lt_valuation_X
valuation_inv_monomial_eq_valuation_X_zpow πŸ“–mathematicalDFunLike.coe
Valuation
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
instIsDomain
Field.toSemifield
Valuation.instFunLike
RatFunc.coePolynomial
RingHom
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
LinearOrderedCommGroupWithZero.toCommGroupWithZero
RatFunc.instDiv
RatFunc.instOne
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
DivInvMonoid.toZPow
GroupWithZero.toDivInvMonoid
CommGroupWithZero.toGroupWithZero
RatFunc.X
β€”instIsDomain
one_div
map_invβ‚€
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
zpow_neg
zpow_natCast
valuation_monomial_eq_valuation_X_pow
valuation_le_one_of_valuation_X_le_one πŸ“–β€”DFunLike.coe
Valuation
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
instIsDomain
Field.toSemifield
Valuation.instFunLike
RatFunc.coePolynomial
RingHom
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
LinearOrderedCommGroupWithZero.toCommGroupWithZero
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
RatFunc.X
β€”β€”instIsDomain
as_sum_range
RatFunc.coePolynomial.eq_1
map_sum
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Valuation.map_sum_le
Nat.instNoMaxOrder
monomial_zero_right
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
valuation_monomial_eq_valuation_X_pow
IsOrderedMonoid.toMulLeftMono
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
valuation_monomial_eq_valuation_X_pow πŸ“–mathematicalDFunLike.coe
Valuation
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
instIsDomain
Field.toSemifield
Valuation.instFunLike
RatFunc.coePolynomial
RingHom
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
LinearOrderedCommGroupWithZero.toCommGroupWithZero
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toModule
module
LinearMap.instFunLike
monomial
Monoid.toNatPow
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
RatFunc.X
β€”instIsDomain
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
MonoidHomClass.toMulHomClass
ValuationClass.toMonoidWithZeroHomClass
Valuation.instValuationClass
one_mul
valuation_of_mk πŸ“–mathematicalβ€”DFunLike.coe
Valuation
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithZero
Multiplicative
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Int.instAddCommMonoid
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedCancelMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
DivisionRing.toRing
Field.toDivisionRing
RatFunc.instField
instIsDomain
Field.toSemifield
Valuation.instFunLike
IsDedekindDomain.HeightOneSpectrum.valuation
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
commRing
IsPrincipalIdealRing.isDedekindDomain
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
EuclideanDomain.to_principal_ideal_domain
instEuclideanDomain
RatFunc.instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
RatFunc.instIsFractionRingPolynomial
idealX
WithZero.div
Multiplicative.div
CommRing.toRing
IsDedekindDomain.HeightOneSpectrum.intValuation
β€”Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
instIsDomain
IsPrincipalIdealRing.isDedekindDomain
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
RatFunc.instIsFractionRingPolynomial
mem_nonZeroDivisors_iff_ne_zero
instNoZeroDivisors
IsDomain.to_noZeroDivisors
nontrivial
IsDomain.toNontrivial
RatFunc.mk_eq_mk'
IsDedekindDomain.HeightOneSpectrum.valuation_of_mk'

RatFunc

Definitions

NameCategoryTheorems
C πŸ“–CompOp
16 mathmath: laurent_X, num_C, smul_eq_C_mul, intDegree_C, algebraMap_eq_C, eval_C, algebraMap_C, liftRingHom_C, laurent_C, denom_C, C_injective, eq_C_iff, FunctionField.inftyValuation.C, algebraMap_monomial, Polynomial.residueFieldMapCAlgEquiv_symm_C, algebraMap_comp_C
X πŸ“–CompOp
19 mathmath: laurent_X, transcendental_X, FunctionField.inftyValuation.X_inv, coe_X, eval_X, Polynomial.valuation_inv_monomial_eq_valuation_X_zpow, algebraMap_X, LaurentSeries.coe_X_compare, num_X, denom_X, FunctionField.inftyValuation.X_zpow, FunctionField.inftyValuation.X, Polynomial.valuation_monomial_eq_valuation_X_pow, liftRingHom_X, intDegree_X, aeval_X_left_eq_algebraMap, Polynomial.residueFieldMapCAlgEquiv_symm_X, algebraMap_monomial, Polynomial.valuation_X_eq_neg_one
eval πŸ“–CompOp
8 mathmath: eval_mul, eval_one, eval_X, eval_eq_zero_of_evalβ‚‚_denom_eq_zero, eval_C, eval_add, eval_zero, eval_algebraMap
instValuedWithZeroMultiplicativeInt πŸ“–CompOp
12 mathmath: LaurentSeries.LaurentSeriesRingEquiv_def, LaurentSeries.inducing_coe, LaurentSeries.continuous_coe, LaurentSeries.valuation_LaurentSeries_equal_extension, v_def, LaurentSeries.LaurentSeries_coe, LaurentSeries.valuation_coe_ratFunc, LaurentSeries.valuation_compare, LaurentSeries.tendsto_valuation, LaurentSeries.comparePkg_eq_extension, LaurentSeries.ratfuncAdicComplRingEquiv_apply, LaurentSeries.exists_ratFunc_eq_v

Theorems

NameKindAssumesProvesValidatesDepends On
C_injective πŸ“–mathematicalβ€”RatFunc
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
RingHom.instFunLike
C
β€”algebraMap_comp_C
RingHom.coe_comp
algebraMap_injective
Polynomial.C_injective
X_ne_zero πŸ“–β€”β€”β€”β€”algebraMap_ne_zero
instIsDomain
Polynomial.X_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
aeval_X_left_eq_algebraMap πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
RatFunc
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
Polynomial.algebraOfAlgebra
Algebra.id
instAlgebraOfPolynomial
AlgHom.funLike
Polynomial.aeval
X
RingHom
Semiring.toNonAssocSemiring
Polynomial.commSemiring
RingHom.instFunLike
algebraMap
β€”Polynomial.induction_on'
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
Polynomial.aeval_monomial
algebraMap_monomial
algebraMap_C πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
RatFunc
Semiring.toNonAssocSemiring
Polynomial.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
RingHom.instFunLike
algebraMap
instAlgebraOfPolynomial
Algebra.id
Polynomial.semiring
Polynomial.C
C
β€”β€”
algebraMap_X πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
RatFunc
Semiring.toNonAssocSemiring
Polynomial.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
RingHom.instFunLike
algebraMap
instAlgebraOfPolynomial
Algebra.id
Polynomial.X
X
β€”β€”
algebraMap_comp_C πŸ“–mathematicalβ€”RingHom.comp
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
RatFunc
Semiring.toNonAssocSemiring
Polynomial.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
algebraMap
instAlgebraOfPolynomial
Algebra.id
Polynomial.C
C
β€”β€”
algebraMap_eq_C πŸ“–mathematicalβ€”algebraMap
RatFunc
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instAlgebraOfPolynomial
Polynomial.algebraOfAlgebra
CommSemiring.toSemiring
Algebra.id
C
β€”β€”
algebraMap_monomial πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
RatFunc
Semiring.toNonAssocSemiring
Polynomial.commSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
RingHom.instFunLike
algebraMap
instAlgebraOfPolynomial
Algebra.id
LinearMap
RingHom.id
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Polynomial.semiring
Semiring.toModule
Polynomial.module
LinearMap.instFunLike
Polynomial.monomial
instMul
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
X
β€”map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
denom_C πŸ“–mathematicalβ€”denom
DFunLike.coe
RingHom
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instIsDomain
RingHom.instFunLike
C
Polynomial
Polynomial.instOne
β€”denom_algebraMap
denom_X πŸ“–mathematicalβ€”denom
X
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.instOne
β€”denom_algebraMap
eq_C_iff πŸ“–mathematicalβ€”DFunLike.coe
RingHom
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instIsDomain
RingHom.instFunLike
C
Polynomial.natDegree
num
denom
β€”instIsDomain
num_C
Polynomial.natDegree_C
denom_C
Polynomial.natDegree_one
Polynomial.natDegree_eq_zero
num_div_denom
algebraMap_C
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
eval_C πŸ“–mathematicalβ€”eval
DFunLike.coe
RingHom
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instIsDomain
RingHom.instFunLike
C
β€”instIsDomain
num_C
Polynomial.evalβ‚‚_C
denom_C
Polynomial.evalβ‚‚_one
div_one
eval_X πŸ“–mathematicalβ€”eval
X
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
β€”instIsDomain
num_X
Polynomial.evalβ‚‚_X
denom_X
Polynomial.evalβ‚‚_one
div_one
eval_add πŸ“–mathematicalβ€”eval
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Polynomial.evalβ‚‚_eq_zero_of_dvd_of_evalβ‚‚_eq_zero
denom_add_dvd
mul_eq_zero
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.evalβ‚‚_mul
div_add_div
eq_div_iff
mul_ne_zero
div_eq_mul_inv
mul_right_comm
div_eq_iff
num_denom_add
eval_algebraMap πŸ“–mathematicalβ€”eval
DFunLike.coe
RingHom
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instIsDomain
RingHom.instFunLike
algebraMap
instAlgebraOfPolynomial
Polynomial.evalβ‚‚
Polynomial
Polynomial.semiring
β€”instIsDomain
IsScalarTower.algebraMap_apply
instIsScalarTowerPolynomial
num_algebraMap
denom_algebraMap
Polynomial.evalβ‚‚_one
div_one
eval_eq_zero_of_evalβ‚‚_denom_eq_zero πŸ“–mathematicalPolynomial.evalβ‚‚
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
denom
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
evalβ€”eval.eq_1
div_zero
eval_mul πŸ“–mathematicalβ€”eval
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Polynomial.evalβ‚‚_eq_zero_of_dvd_of_evalβ‚‚_eq_zero
denom_mul_dvd
mul_eq_zero
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.evalβ‚‚_mul
div_mul_div_comm
eq_div_iff
mul_ne_zero
div_eq_mul_inv
mul_right_comm
div_eq_iff
num_denom_mul
eval_one πŸ“–mathematicalβ€”eval
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instOne
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”num_one
Polynomial.evalβ‚‚_one
denom_one
div_self
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
eval_zero πŸ“–mathematicalβ€”eval
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”num_zero
Polynomial.evalβ‚‚_zero
denom_zero
Polynomial.evalβ‚‚_one
div_one
evalβ‚‚_denom_ne_zero πŸ“–β€”β€”β€”β€”eval_eq_zero_of_evalβ‚‚_denom_eq_zero
liftRingHom_C πŸ“–mathematicalSubmonoid
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Polynomial.semiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Submonoid.comap
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
DFunLike.coe
RatFunc
instCommRing
liftRingHom
instField
C
Polynomial.C
β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
liftRingHom_algebraMap
liftRingHom_X πŸ“–mathematicalSubmonoid
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
MulZeroOneClass.toMulOneClass
MonoidWithZero.toMulZeroOneClass
Semiring.toMonoidWithZero
Polynomial.semiring
Preorder.toLE
PartialOrder.toPreorder
Submonoid.instPartialOrder
nonZeroDivisors
Submonoid.comap
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom
RingHom.instFunLike
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
DFunLike.coe
RatFunc
instCommRing
liftRingHom
X
Polynomial.X
β€”MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
liftRingHom_algebraMap
num_C πŸ“–mathematicalβ€”num
DFunLike.coe
RingHom
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instIsDomain
RingHom.instFunLike
C
Polynomial
Polynomial.semiring
Polynomial.C
β€”num_algebraMap
num_X πŸ“–mathematicalβ€”num
X
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Polynomial.X
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”num_algebraMap
smul_eq_C_mul πŸ“–mathematicalβ€”RatFunc
instSMulOfFractionRingPolynomial
OreLocalization.instSMulOfIsScalarTower
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
CommMonoid.toMonoid
CommRing.toCommMonoid
Polynomial.commRing
nonZeroDivisors
Semiring.toMonoidWithZero
OreLocalization.oreSetComm
Monoid.toMulAction
Algebra.toSMul
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
IsScalarTower.right
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
RingHom.instFunLike
C
β€”IsScalarTower.right
Algebra.smul_def
algebraMap_eq_C
transcendental πŸ“–mathematicalβ€”Algebra.Transcendental
RatFunc
DivisionRing.toRing
Field.toDivisionRing
instField
instAlgebraOfPolynomial
CommRing.toCommSemiring
Polynomial.algebraOfAlgebra
CommSemiring.toSemiring
Algebra.id
β€”transcendental_X
transcendental_X πŸ“–mathematicalβ€”Transcendental
RatFunc
DivisionRing.toRing
Field.toDivisionRing
instField
instAlgebraOfPolynomial
CommRing.toCommSemiring
Polynomial.algebraOfAlgebra
CommSemiring.toSemiring
Algebra.id
X
β€”algebraMap_X
transcendental_algebraMap_iff
instIsScalarTowerPolynomial
algebraMap_injective
Polynomial.transcendental_X
v_def πŸ“–mathematicalβ€”DFunLike.coe
Valuation
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
WithZero
Multiplicative
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
WithZero.instLinearOrderedCommGroupWithZero
Multiplicative.commGroup
Int.instAddCommGroup
Multiplicative.linearOrder
Int.instLinearOrder
Multiplicative.isOrderedMonoid
Int.instAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Int.instIsOrderedAddMonoid
DivisionRing.toRing
Field.toDivisionRing
instField
instIsDomain
Field.toSemifield
Valuation.instFunLike
Valued.v
instValuedWithZeroMultiplicativeInt
WithZero.instLinearOrderedCommMonoidWithZero
Multiplicative.commMonoid
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instSemiring
Int.instIsStrictOrderedRing
IsDedekindDomain.HeightOneSpectrum.valuation
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.commRing
IsPrincipalIdealRing.isDedekindDomain
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
AddGroup.toAddCancelMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
EuclideanDomain.to_principal_ideal_domain
Polynomial.instEuclideanDomain
instAlgebraOfPolynomial
CommRing.toCommSemiring
Algebra.id
instIsFractionRingPolynomial
Polynomial.idealX
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
instIsDomain

---

← Back to Index