| Metric | Count |
Definitionsadd, coePolynomial, denom, div, instAdd, instAddCommGroup, instAlgebraOfPolynomial, instCoePolynomial, instCommMonoid, instCommRing, instDiv, instField, instInhabited, instInv, instMul, instNeg, instOne, instSMulOfFractionRingPolynomial, instSub, instZero, inv, liftAlgHom, liftAlgebra, liftMonoidWithZeroHom, liftRingHom, map, mapAlgHom, mapRingHom, mul, neg, num, numDenom, one, smul, sub, tacticFrac_tac, tacticSmul_tac, toFractionRingAlgEquiv, toFractionRingRingEquiv, zero | 40 |
Theoremsadd_def, algebraMap_apply, algebraMap_injective, algebraMap_ne_zero, associated_denom_inv, associated_num_inv, coe_mapAlgHom_eq_coe_map, coe_mapRingHom_eq_coe_map, denom_add_dvd, denom_algebraMap, denom_div, denom_div_dvd, denom_dvd, denom_inv_dvd, denom_mul_dvd, denom_ne_zero, denom_one, denom_zero, div_def, div_smul, faithfulSMul, finrank_ratFunc_ratFunc, induction_on, instCharP, instCharZero, instExpChar, instIsFractionRingPolynomial, instIsScalarTowerOfIsDomainOfPolynomial, instIsScalarTowerOfPolynomial, instIsScalarTowerOfPolynomial_1, instIsScalarTowerPolynomial, instNontrivial, instSubsingleton, inv_def, isCoprime_num_denom, isScalarTower_liftAlgebra, liftAlgHom_apply, liftAlgHom_apply_div, liftAlgHom_apply_div', liftAlgHom_apply_ofFractionRing_mk, liftAlgHom_injective, liftMonoidWithZeroHom_apply, liftMonoidWithZeroHom_apply_div, liftMonoidWithZeroHom_apply_div', liftMonoidWithZeroHom_apply_ofFractionRing_mk, liftMonoidWithZeroHom_injective, liftOn'_div, liftOn_div, liftRingHom_algebraMap, liftRingHom_apply, liftRingHom_apply_div, liftRingHom_apply_div', liftRingHom_apply_ofFractionRing_mk, liftRingHom_comp_algebraMap, liftRingHom_injective, liftRingHom_ofFractionRing_algebraMap, map_apply, map_apply_div, map_apply_div_ne_zero, map_apply_ofFractionRing_mk, map_denom_ne_zero, map_injective, mk_eq_div, mk_eq_mk', mk_one, mk_smul, monic_denom, mul_def, mul_inv_cancel, neg_def, numDenom_div, num_algebraMap, num_denom_add, num_denom_mul, num_denom_neg, num_div, num_div_denom, num_div_dvd, num_div_dvd', num_dvd, num_eq_zero_iff, num_inv_dvd, num_mul_denom_add_denom_mul_num_ne_zero, num_mul_dvd, num_mul_eq_mul_denom_iff, num_ne_zero, num_one, num_zero, ofFractionRing_add, ofFractionRing_algebraMap, ofFractionRing_comp_algebraMap, ofFractionRing_div, ofFractionRing_eq, ofFractionRing_inv, ofFractionRing_mk', ofFractionRing_mul, ofFractionRing_neg, ofFractionRing_one, ofFractionRing_smul, ofFractionRing_sub, ofFractionRing_zero, one_def, rank_ratFunc_ratFunc, smul_def, smul_eq_C_smul, sub_def, toFractionRingAlgEquiv_apply, toFractionRingRingEquiv_apply, toFractionRingRingEquiv_symm_eq, toFractionRing_eq, toFractionRing_smul, zero_def | 112 |
| Total | 152 |
| Name | Category | Theorems |
add 📖 | CompOp | 1 mathmath: add_def
|
coePolynomial 📖 | CompOp | 1 mathmath: coe_coe
|
denom 📖 | CompOp | 28 mathmath: liftMonoidWithZeroHom_apply, denom_one, denom_mul_dvd, isCoprime_num_denom, map_apply, num_denom_add, num_inv_dvd, num_denom_mul, liftRingHom_apply, intDegree_add, denom_X, denom_div, denom_div_dvd, denom_inv_dvd, denom_C, natDegree_num_mul_right_sub_natDegree_denom_mul_left_eq_intDegree, liftAlgHom_apply, denom_algebraMap, eq_C_iff, num_mul_eq_mul_denom_iff, denom_add_dvd, num_div_denom, associated_num_inv, denom_dvd, denom_zero, associated_denom_inv, num_denom_neg, monic_denom
|
div 📖 | CompOp | 1 mathmath: div_def
|
instAdd 📖 | CompOp | 10 mathmath: laurent_X, num_denom_add, FunctionField.InftyValuation.map_add_le_max', ofFractionRing_add, intDegree_add_le, intDegree_add, eval_add, denom_add_dvd, toFractionRingRingEquiv_symm_eq, toFractionRingRingEquiv_apply
|
instAddCommGroup 📖 | CompOp | — |
instAlgebraOfPolynomial 📖 | CompOp | 83 mathmath: laurent_injective, ofFractionRing_mk', num_div, coe_mapAlgHom_eq_coe_map, num_div_dvd, laurent_X, LaurentSeries.LaurentSeriesRingEquiv_def, transcendental_X, laurent_algebraMap, laurent_div, liftAlgHom_injective, liftMonoidWithZeroHom_apply_div', FunctionField.inftyValuation.polynomial, Polynomial.valuation_of_mk, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, map_apply, mk_eq_mk', instIsFractionRingPolynomial, laurent_at_zero, numDenom_div, laurent_laurent, num_algebraMap, liftMonoidWithZeroHom_apply_div, num_dvd, laurentAux_div, mk_eq_div, liftOn_div, ofFractionRing_comp_algebraMap, algebraMap_X, valuation_eq_LaurentSeries_valuation, map_apply_div, liftRingHom_apply_div', LaurentSeries.coe_X_compare, laurentAux_algebraMap, algebraMap_eq_C, algebraMap_apply_div, div_smul, liftRingHom_apply_div, algebraMap_C, liftAlgHom_apply_div, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, denom_div, intDegree_polynomial, v_def, LaurentSeries.powerSeries_ext_subring, liftAlgHom_apply_ofFractionRing_mk, denom_div_dvd, laurent_C, rank_ratFunc_ratFunc, LaurentSeries.powerSeriesRingEquiv_coe_apply, Polynomial.cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, liftOn'_div, LaurentSeries.valuation_compare, algebraMap_apply, liftAlgHom_apply, LaurentSeries.tendsto_valuation, transcendental, mk_one, algebraMap_injective, finrank_ratFunc_ratFunc, ofFractionRing_eq, denom_algebraMap, liftRingHom_comp_algebraMap, num_mul_eq_mul_denom_iff, liftAlgHom_apply_div', liftRingHom_algebraMap, LaurentSeries.ratfuncAdicComplRingEquiv_apply, num_div_denom, toFractionRingRingEquiv_symm_eq, aeval_X_left_eq_algebraMap, Polynomial.residueFieldMapCAlgEquiv_symm_X, LaurentSeries.mem_integers_of_powerSeries, algebraMap_monomial, denom_dvd, Polynomial.residueFieldMapCAlgEquiv_algebraMap, toFractionRingAlgEquiv_apply, map_apply_div_ne_zero, Polynomial.residueFieldMapCAlgEquiv_symm_C, algebraMap_comp_C, ofFractionRing_algebraMap, eval_algebraMap, Polynomial.valuation_X_eq_neg_one, toFractionRing_eq
|
instCoePolynomial 📖 | CompOp | — |
instCommMonoid 📖 | CompOp | — |
instCommRing 📖 | CompOp | 35 mathmath: liftMonoidWithZeroHom_apply, coe_mapAlgHom_eq_coe_map, liftMonoidWithZeroHom_apply_ofFractionRing_mk, LaurentSeries.LaurentSeriesRingEquiv_def, map_apply_ofFractionRing_mk, liftMonoidWithZeroHom_apply_div', map_injective, coe_mapRingHom_eq_coe_map, map_apply, liftRingHom_injective, liftMonoidWithZeroHom_apply_div, laurentAux_div, liftRingHom_apply, map_apply_div, liftRingHom_apply_div', LaurentSeries.coe_X_compare, liftRingHom_ofFractionRing_algebraMap, laurentAux_algebraMap, liftRingHom_apply_div, LaurentSeries.exists_powerSeries_of_memIntegers, liftRingHom_C, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, liftMonoidWithZeroHom_injective, rank_ratFunc_ratFunc, LaurentSeries.powerSeriesRingEquiv_coe_apply, liftRingHom_apply_ofFractionRing_mk, Polynomial.cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, liftRingHom_X, finrank_ratFunc_ratFunc, liftRingHom_comp_algebraMap, liftRingHom_algebraMap, LaurentSeries.ratfuncAdicComplRingEquiv_apply, LaurentSeries.mem_integers_of_powerSeries, laurentAux_ofFractionRing_mk, map_apply_div_ne_zero
|
instDiv 📖 | CompOp | 26 mathmath: num_div, num_div_dvd, FunctionField.inftyValuation.X_inv, laurent_div, map_apply, ofFractionRing_div, numDenom_div, liftMonoidWithZeroHom_apply_div, num_dvd, laurentAux_div, mk_eq_div, Polynomial.valuation_inv_monomial_eq_valuation_X_zpow, liftOn_div, map_apply_div, algebraMap_apply_div, div_smul, liftRingHom_apply_div, liftAlgHom_apply_div, denom_div, denom_div_dvd, liftOn'_div, algebraMap_apply, num_mul_eq_mul_denom_iff, num_div_denom, denom_dvd, map_apply_div_ne_zero
|
instField 📖 | CompOp | 115 mathmath: laurent_injective, ofFractionRing_mk', num_div, coe_mapAlgHom_eq_coe_map, num_div_dvd, laurent_X, LaurentSeries.LaurentSeriesRingEquiv_def, transcendental_X, FunctionField.inftyValuation.X_inv, laurent_algebraMap, laurent_div, liftAlgHom_injective, FunctionField.instIsNontrivialRatFuncWithZeroMultiplicativeIntInftyValuation, liftMonoidWithZeroHom_apply_div', coe_X, FunctionField.inftyValuation.polynomial, coe_coe, Polynomial.valuation_of_mk, LaurentSeries.inducing_coe, LaurentSeries.continuous_coe, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, map_apply, mk_eq_mk', FunctionField.valuedFqtInfty.def, instIsFractionRingPolynomial, laurent_at_zero, numDenom_div, instIsScalarTowerOfPolynomial_1, num_C, smul_eq_C_mul, laurent_laurent, LaurentSeries.exists_ratFunc_val_lt, num_algebraMap, liftMonoidWithZeroHom_apply_div, num_dvd, laurentAux_div, mk_eq_div, liftOn_div, ofFractionRing_comp_algebraMap, algebraMap_X, intDegree_C, valuation_eq_LaurentSeries_valuation, map_apply_div, liftRingHom_apply_div', LaurentSeries.coe_X_compare, laurentAux_algebraMap, algebraMap_eq_C, algebraMap_apply_div, div_smul, eval_C, liftRingHom_apply_div, algebraMap_C, liftAlgHom_apply_div, liftRingHom_C, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, denom_div, LaurentSeries.valuation_LaurentSeries_equal_extension, intDegree_polynomial, v_def, instCharZero, LaurentSeries.LaurentSeries_coe, LaurentSeries.powerSeries_ext_subring, liftAlgHom_apply_ofFractionRing_mk, denom_div_dvd, laurent_C, FunctionField.inftyValuation.X_zpow, rank_ratFunc_ratFunc, LaurentSeries.powerSeriesRingEquiv_coe_apply, instIsScalarTowerOfPolynomial, FunctionField.inftyValuation.X, FunctionField.inftyValuedFqt.def, Polynomial.cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, instExpChar, liftOn'_div, denom_C, instCharP, C_injective, LaurentSeries.valuation_coe_ratFunc, LaurentSeries.valuation_compare, algebraMap_apply, liftAlgHom_apply, LaurentSeries.tendsto_valuation, transcendental, mk_one, algebraMap_injective, LaurentSeries.coe_range_dense, finrank_ratFunc_ratFunc, ofFractionRing_eq, denom_algebraMap, eq_C_iff, num_mul_eq_mul_denom_iff, LaurentSeries.comparePkg_eq_extension, liftAlgHom_apply_div', FunctionField.inftyValuation.C, liftRingHom_algebraMap, isScalarTower_liftAlgebra, LaurentSeries.ratfuncAdicComplRingEquiv_apply, num_div_denom, toFractionRingRingEquiv_symm_eq, aeval_X_left_eq_algebraMap, Polynomial.residueFieldMapCAlgEquiv_symm_X, LaurentSeries.mem_integers_of_powerSeries, algebraMap_monomial, denom_dvd, FunctionField.inftyValuation_apply, Polynomial.residueFieldMapCAlgEquiv_algebraMap, toFractionRingAlgEquiv_apply, LaurentSeries.exists_ratFunc_eq_v, map_apply_div_ne_zero, Polynomial.residueFieldMapCAlgEquiv_symm_C, algebraMap_comp_C, ofFractionRing_algebraMap, eval_algebraMap, Polynomial.valuation_X_eq_neg_one, toFractionRing_eq
|
instInhabited 📖 | CompOp | — |
instInv 📖 | CompOp | 7 mathmath: intDegree_inv, num_inv_dvd, denom_inv_dvd, ofFractionRing_inv, associated_num_inv, mul_inv_cancel, associated_denom_inv
|
instMul 📖 | CompOp | 12 mathmath: eval_mul, denom_mul_dvd, smul_eq_C_mul, intDegree_mul, num_denom_mul, FunctionField.InftyValuation.map_mul', num_mul_dvd, toFractionRingRingEquiv_symm_eq, toFractionRingRingEquiv_apply, algebraMap_monomial, mul_inv_cancel, ofFractionRing_mul
|
instNeg 📖 | CompOp | 3 mathmath: ofFractionRing_neg, intDegree_neg, num_denom_neg
|
instOne 📖 | CompOp | 9 mathmath: num_one, denom_one, FunctionField.inftyValuation.X_inv, eval_one, ofFractionRing_one, Polynomial.valuation_inv_monomial_eq_valuation_X_zpow, FunctionField.InftyValuation.map_one', intDegree_one, mul_inv_cancel
|
instSMulOfFractionRingPolynomial 📖 | CompOp | 11 mathmath: mk_smul, toFractionRing_smul, smul_eq_C_mul, smul_eq_C_smul, instIsScalarTowerOfIsDomainOfPolynomial, div_smul, faithfulSMul, instIsScalarTowerPolynomial, ofFractionRing_smul, instIsScalarTowerOfPolynomial, isScalarTower_liftAlgebra
|
instSub 📖 | CompOp | 1 mathmath: ofFractionRing_sub
|
instZero 📖 | CompOp | 7 mathmath: FunctionField.InftyValuation.map_zero', ofFractionRing_zero, num_zero, num_eq_zero_iff, eval_zero, denom_zero, intDegree_zero
|
inv 📖 | CompOp | 1 mathmath: inv_def
|
liftAlgHom 📖 | CompOp | 5 mathmath: liftAlgHom_injective, liftAlgHom_apply_div, liftAlgHom_apply_ofFractionRing_mk, liftAlgHom_apply, liftAlgHom_apply_div'
|
liftAlgebra 📖 | CompOp | 15 mathmath: coe_X, coe_coe, LaurentSeries.inducing_coe, LaurentSeries.continuous_coe, instIsScalarTowerOfPolynomial_1, LaurentSeries.exists_ratFunc_val_lt, valuation_eq_LaurentSeries_valuation, algebraMap_apply_div, LaurentSeries.LaurentSeries_coe, rank_ratFunc_ratFunc, instIsScalarTowerOfPolynomial, LaurentSeries.valuation_coe_ratFunc, LaurentSeries.coe_range_dense, finrank_ratFunc_ratFunc, isScalarTower_liftAlgebra
|
liftMonoidWithZeroHom 📖 | CompOp | 5 mathmath: liftMonoidWithZeroHom_apply, liftMonoidWithZeroHom_apply_ofFractionRing_mk, liftMonoidWithZeroHom_apply_div', liftMonoidWithZeroHom_apply_div, liftMonoidWithZeroHom_injective
|
liftRingHom 📖 | CompOp | 10 mathmath: liftRingHom_injective, liftRingHom_apply, liftRingHom_apply_div', liftRingHom_ofFractionRing_algebraMap, liftRingHom_apply_div, liftRingHom_C, liftRingHom_apply_ofFractionRing_mk, liftRingHom_X, liftRingHom_comp_algebraMap, liftRingHom_algebraMap
|
map 📖 | CompOp | 7 mathmath: coe_mapAlgHom_eq_coe_map, map_apply_ofFractionRing_mk, map_injective, coe_mapRingHom_eq_coe_map, map_apply, map_apply_div, map_apply_div_ne_zero
|
mapAlgHom 📖 | CompOp | 1 mathmath: coe_mapAlgHom_eq_coe_map
|
mapRingHom 📖 | CompOp | 1 mathmath: coe_mapRingHom_eq_coe_map
|
mul 📖 | CompOp | 1 mathmath: mul_def
|
neg 📖 | CompOp | 1 mathmath: neg_def
|
num 📖 | CompOp | 27 mathmath: liftMonoidWithZeroHom_apply, num_div, num_div_dvd, num_one, isCoprime_num_denom, map_apply, num_denom_add, num_C, num_algebraMap, num_dvd, num_zero, num_inv_dvd, num_denom_mul, liftRingHom_apply, num_X, num_eq_zero_iff, intDegree_add, denom_inv_dvd, num_mul_dvd, natDegree_num_mul_right_sub_natDegree_denom_mul_left_eq_intDegree, liftAlgHom_apply, eq_C_iff, num_mul_eq_mul_denom_iff, num_div_denom, associated_num_inv, associated_denom_inv, num_denom_neg
|
numDenom 📖 | CompOp | 1 mathmath: numDenom_div
|
one 📖 | CompOp | 1 mathmath: one_def
|
smul 📖 | CompOp | 1 mathmath: smul_def
|
sub 📖 | CompOp | 1 mathmath: sub_def
|
tacticFrac_tac 📖 | CompOp | — |
tacticSmul_tac 📖 | CompOp | — |
toFractionRingAlgEquiv 📖 | CompOp | 1 mathmath: toFractionRingAlgEquiv_apply
|
toFractionRingRingEquiv 📖 | CompOp | 2 mathmath: toFractionRingRingEquiv_symm_eq, toFractionRingRingEquiv_apply
|
zero 📖 | CompOp | 1 mathmath: zero_def
|