RatFunc 📖 | CompData | 186 mathmath: RatFunc.eval_mul, RatFunc.laurent_injective, RatFunc.ofFractionRing_mk', RatFunc.liftMonoidWithZeroHom_apply, RatFunc.toFractionRing_injective, RatFunc.num_div, RatFunc.coe_mapAlgHom_eq_coe_map, RatFunc.num_div_dvd, RatFunc.liftMonoidWithZeroHom_apply_ofFractionRing_mk, RatFunc.laurent_X, RatFunc.num_one, RatFunc.smul_def, LaurentSeries.LaurentSeriesRingEquiv_def, RatFunc.transcendental_X, RatFunc.denom_one, RatFunc.denom_mul_dvd, FunctionField.inftyValuation.X_inv, RatFunc.map_apply_ofFractionRing_mk, RatFunc.laurent_algebraMap, RatFunc.mk_smul, FunctionField.InftyValuation.map_zero', RatFunc.laurent_div, RatFunc.eval_one, RatFunc.liftAlgHom_injective, FunctionField.instIsNontrivialRatFuncWithZeroMultiplicativeIntInftyValuation, RatFunc.liftMonoidWithZeroHom_apply_div', RatFunc.map_injective, RatFunc.coe_X, FunctionField.inftyValuation.polynomial, RatFunc.coe_mapRingHom_eq_coe_map, RatFunc.coe_coe, Polynomial.valuation_of_mk, LaurentSeries.inducing_coe, LaurentSeries.continuous_coe, LaurentSeries.algebraMap_C_mem_adicCompletionIntegers, RatFunc.map_apply, RatFunc.mk_eq_mk', RatFunc.instNontrivial, RatFunc.ofFractionRing_div, RatFunc.toFractionRing_smul, RatFunc.num_denom_add, FunctionField.valuedFqtInfty.def, RatFunc.instIsFractionRingPolynomial, RatFunc.intDegree_inv, RatFunc.ofFractionRing_one, RatFunc.laurent_at_zero, RatFunc.liftRingHom_injective, RatFunc.numDenom_div, RatFunc.instIsScalarTowerOfPolynomial_1, RatFunc.num_C, FunctionField.InftyValuation.map_add_le_max', RatFunc.smul_eq_C_mul, RatFunc.laurent_laurent, LaurentSeries.exists_ratFunc_val_lt, RatFunc.num_algebraMap, RatFunc.ofFractionRing_zero, RatFunc.ofFractionRing_add, RatFunc.liftMonoidWithZeroHom_apply_div, RatFunc.num_dvd, RatFunc.laurentAux_div, RatFunc.mk_eq_div, RatFunc.num_zero, RatFunc.intDegree_mul, RatFunc.liftOn_div, RatFunc.num_inv_dvd, RatFunc.ofFractionRing_comp_algebraMap, RatFunc.algebraMap_X, RatFunc.intDegree_C, FunctionField.InftyValuation.map_one', RatFunc.num_denom_mul, RatFunc.intDegree_add_le, RatFunc.smul_eq_C_smul, RatFunc.valuation_eq_LaurentSeries_valuation, RatFunc.liftRingHom_apply, RatFunc.map_apply_div, RatFunc.instIsScalarTowerOfIsDomainOfPolynomial, RatFunc.liftRingHom_apply_div', LaurentSeries.coe_X_compare, FunctionField.InftyValuation.map_mul', RatFunc.liftRingHom_ofFractionRing_algebraMap, RatFunc.laurentAux_algebraMap, RatFunc.algebraMap_eq_C, RatFunc.algebraMap_apply_div, RatFunc.div_smul, RatFunc.eval_C, RatFunc.inv_def, RatFunc.liftRingHom_apply_div, RatFunc.faithfulSMul, RatFunc.algebraMap_C, RatFunc.instIsScalarTowerPolynomial, RatFunc.num_eq_zero_iff, RatFunc.ofFractionRing_smul, RatFunc.intDegree_add, RatFunc.liftAlgHom_apply_div, RatFunc.liftRingHom_C, RatFunc.ofFractionRing_injective, LaurentSeries.LaurentSeriesRingEquiv_mem_valuationSubring, RatFunc.denom_div, LaurentSeries.valuation_LaurentSeries_equal_extension, RatFunc.ofFractionRing_sub, RatFunc.intDegree_polynomial, RatFunc.v_def, RatFunc.instCharZero, LaurentSeries.LaurentSeries_coe, RatFunc.ofFractionRing_neg, RatFunc.liftMonoidWithZeroHom_injective, LaurentSeries.powerSeries_ext_subring, RatFunc.liftAlgHom_apply_ofFractionRing_mk, RatFunc.denom_div_dvd, RatFunc.laurent_C, RatFunc.eval_add, FunctionField.inftyValuation.X_zpow, RatFunc.rank_ratFunc_ratFunc, LaurentSeries.powerSeriesRingEquiv_coe_apply, RatFunc.instIsScalarTowerOfPolynomial, FunctionField.inftyValuation.X, RatFunc.denom_inv_dvd, FunctionField.inftyValuedFqt.def, RatFunc.liftRingHom_apply_ofFractionRing_mk, RatFunc.num_mul_dvd, Polynomial.cyclotomic_eq_prod_X_pow_sub_one_pow_moebius, RatFunc.instExpChar, RatFunc.liftOn'_div, RatFunc.denom_C, RatFunc.eval_zero, RatFunc.instCharP, RatFunc.C_injective, LaurentSeries.valuation_coe_ratFunc, RatFunc.liftRingHom_X, LaurentSeries.valuation_compare, RatFunc.ofFractionRing_inv, RatFunc.algebraMap_apply, RatFunc.liftAlgHom_apply, LaurentSeries.tendsto_valuation, RatFunc.transcendental, RatFunc.mk_one, RatFunc.algebraMap_injective, LaurentSeries.coe_range_dense, RatFunc.finrank_ratFunc_ratFunc, RatFunc.neg_def, RatFunc.ofFractionRing_eq, RatFunc.denom_algebraMap, RatFunc.liftRingHom_comp_algebraMap, RatFunc.intDegree_one, RatFunc.eq_C_iff, RatFunc.num_mul_eq_mul_denom_iff, LaurentSeries.comparePkg_eq_extension, RatFunc.liftAlgHom_apply_div', FunctionField.inftyValuation.C, RatFunc.liftRingHom_algebraMap, RatFunc.isScalarTower_liftAlgebra, RatFunc.sub_def, LaurentSeries.ratfuncAdicComplRingEquiv_apply, RatFunc.div_def, RatFunc.add_def, RatFunc.denom_add_dvd, RatFunc.num_div_denom, RatFunc.toFractionRingRingEquiv_symm_eq, RatFunc.aeval_X_left_eq_algebraMap, Polynomial.residueFieldMapCAlgEquiv_symm_X, RatFunc.associated_num_inv, RatFunc.toFractionRingRingEquiv_apply, LaurentSeries.mem_integers_of_powerSeries, RatFunc.algebraMap_monomial, RatFunc.instSubsingleton, RatFunc.denom_dvd, RatFunc.mul_inv_cancel, RatFunc.intDegree_neg, RatFunc.mul_def, FunctionField.inftyValuation_apply, Polynomial.residueFieldMapCAlgEquiv_algebraMap, RatFunc.toFractionRingAlgEquiv_apply, RatFunc.laurentAux_ofFractionRing_mk, LaurentSeries.exists_ratFunc_eq_v, RatFunc.map_apply_div_ne_zero, RatFunc.denom_zero, RatFunc.associated_denom_inv, Polynomial.residueFieldMapCAlgEquiv_symm_C, RatFunc.intDegree_zero, RatFunc.algebraMap_comp_C, RatFunc.ofFractionRing_algebraMap, RatFunc.eval_algebraMap, RatFunc.num_denom_neg, Polynomial.valuation_X_eq_neg_one, RatFunc.ofFractionRing_mul, RatFunc.toFractionRing_eq
|