Documentation Verification Report

Degree

πŸ“ Source: Mathlib/FieldTheory/RatFunc/Degree.lean

Statistics

MetricCount
DefinitionsintDegree
1
TheoremsintDegree_C, intDegree_X, intDegree_add, intDegree_add_le, intDegree_inv, intDegree_mul, intDegree_neg, intDegree_one, intDegree_polynomial, intDegree_zero, natDegree_num_mul_right_sub_natDegree_denom_mul_left_eq_intDegree
11
Total12

RatFunc

Definitions

NameCategoryTheorems
intDegree πŸ“–CompOp
12 mathmath: FunctionField.inftyValuation_of_nonzero, intDegree_inv, intDegree_mul, intDegree_C, intDegree_add_le, intDegree_add, intDegree_polynomial, natDegree_num_mul_right_sub_natDegree_denom_mul_left_eq_intDegree, intDegree_one, intDegree_X, intDegree_neg, intDegree_zero

Theorems

NameKindAssumesProvesValidatesDepends On
intDegree_C πŸ“–mathematicalβ€”intDegree
DFunLike.coe
RingHom
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instIsDomain
RingHom.instFunLike
C
β€”instIsDomain
intDegree.eq_1
num_C
Polynomial.natDegree_C
denom_C
Polynomial.natDegree_one
sub_self
intDegree_X πŸ“–mathematicalβ€”intDegree
X
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
β€”instIsDomain
intDegree.eq_1
num_X
Polynomial.natDegree_X
IsLocalRing.toNontrivial
Field.instIsLocalRing
denom_X
Polynomial.natDegree_one
sub_zero
intDegree_add πŸ“–mathematicalβ€”intDegree
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instAdd
Polynomial.natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
Polynomial.instAdd
Polynomial.instMul
num
denom
β€”Polynomial.natDegree_sub_eq_of_prod_eq
IsDomain.to_noZeroDivisors
instIsDomain
num_ne_zero
denom_ne_zero
num_mul_denom_add_denom_mul_num_ne_zero
mul_ne_zero
Polynomial.instNoZeroDivisors
num_denom_add
intDegree_add_le πŸ“–mathematicalβ€”intDegree
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instAdd
β€”zero_add
instIsDomain
intDegree_zero
intDegree_add
natDegree_num_mul_right_sub_natDegree_denom_mul_left_eq_intDegree
denom_ne_zero
mul_comm
le_max_iff
sub_le_sub_iff_right
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
Polynomial.natDegree_add_le
intDegree_inv πŸ“–mathematicalβ€”intDegree
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instInv
instIsDomain
Field.toSemifield
β€”instIsDomain
inv_zero
intDegree_zero
neg_zero
intDegree_mul
inv_ne_zero
inv_mul_cancelβ‚€
intDegree_one
intDegree_mul πŸ“–mathematicalβ€”intDegree
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
β€”add_sub
sub_add
sub_sub_eq_add_sub
sub_sub
Int.instCharZero
Polynomial.natDegree_mul
IsDomain.to_noZeroDivisors
instIsDomain
denom_ne_zero
num_ne_zero
mul_ne_zero
Polynomial.instNoZeroDivisors
num_denom_mul
intDegree_neg πŸ“–mathematicalβ€”intDegree
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instNeg
β€”instIsDomain
neg_zero
intDegree.eq_1
Polynomial.natDegree_neg
Polynomial.natDegree_sub_eq_of_prod_eq
IsDomain.to_noZeroDivisors
num_ne_zero
neg_ne_zero
denom_ne_zero
num_denom_neg
intDegree_one πŸ“–mathematicalβ€”intDegree
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instOne
β€”intDegree.eq_1
num_one
denom_one
sub_self
intDegree_polynomial πŸ“–mathematicalβ€”intDegree
DFunLike.coe
RingHom
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Polynomial.commSemiring
Semifield.toCommSemiring
instField
instIsDomain
RingHom.instFunLike
algebraMap
instAlgebraOfPolynomial
Algebra.id
Polynomial.natDegree
β€”instIsDomain
intDegree.eq_1
num_algebraMap
denom_algebraMap
Polynomial.natDegree_one
sub_zero
intDegree_zero πŸ“–mathematicalβ€”intDegree
RatFunc
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instZero
β€”intDegree.eq_1
num_zero
Polynomial.natDegree_zero
denom_zero
Polynomial.natDegree_one
sub_self
natDegree_num_mul_right_sub_natDegree_denom_mul_left_eq_intDegree πŸ“–mathematicalβ€”Polynomial.natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
Polynomial.instMul
num
denom
intDegree
β€”Polynomial.natDegree_sub_eq_of_prod_eq
IsDomain.to_noZeroDivisors
instIsDomain
mul_ne_zero
Polynomial.instNoZeroDivisors
num_ne_zero
denom_ne_zero
mul_assoc

---

← Back to Index