📁 Source: Mathlib/FieldTheory/Relrank.lean
relfinrank
relrank
finrank_bot_mul_relfinrank
finrank_comap
inf_relfinrank_left
inf_relfinrank_right
inf_relrank_left
inf_relrank_right
lift_rank_comap
lift_relrank_comap
lift_relrank_comap_comap_eq_lift_relrank_inf
lift_relrank_comap_comap_eq_lift_relrank_of_le
lift_relrank_comap_comap_eq_lift_relrank_of_surjective
lift_relrank_map_map
rank_bot_mul_relrank
rank_comap
relfinrank_bot_left
relfinrank_bot_right
relfinrank_comap
relfinrank_comap_comap_eq_relfinrank_inf
relfinrank_comap_comap_eq_relfinrank_of_le
relfinrank_comap_comap_eq_relfinrank_of_surjective
relfinrank_dvd_finrank_bot
relfinrank_dvd_finrank_top_of_le
relfinrank_dvd_of_le_left
relfinrank_eq_finrank_of_le
relfinrank_eq_of_inf_eq
relfinrank_eq_one_iff
relfinrank_eq_one_of_le
relfinrank_eq_toNat_relrank
relfinrank_inf_mul_relfinrank
relfinrank_inf_mul_relfinrank_of_le
relfinrank_map_map
relfinrank_mul_finrank_top
relfinrank_mul_relfinrank
relfinrank_mul_relfinrank_eq_inf_relfinrank
relfinrank_self
relfinrank_top_left
relfinrank_top_right
relrank_bot_left
relrank_bot_right
relrank_comap
relrank_comap_comap_eq_relrank_inf
relrank_comap_comap_eq_relrank_of_le
relrank_comap_comap_eq_relrank_of_surjective
relrank_dvd_of_le_left
relrank_dvd_rank_bot
relrank_dvd_rank_top_of_le
relrank_eq_of_inf_eq
relrank_eq_one_iff
relrank_eq_one_of_le
relrank_eq_rank_of_le
relrank_inf_mul_relrank
relrank_inf_mul_relrank_of_le
relrank_map_map
relrank_mul_rank_top
relrank_mul_relrank
relrank_mul_relrank_eq_inf_relrank
relrank_self
relrank_top_left
relrank_top_right
IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Module.finrank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
comap
instModuleSubtypeMem
Semiring.toModule
AlgHom.fieldRange
Cardinal.toNat_lift
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
inf_comm
inf_le_right
Cardinal.lift
Module.rank
Subfield.lift_rank_comap
map
Subfield.lift_relrank_comap
Subfield.lift_relrank_comap_comap_eq_lift_relrank_inf
inf_of_le_left
DFunLike.coe
AlgHom
AlgHom.funLike
comap_map
Cardinal
Cardinal.instMul
rank_mul_rank
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
Module.Free.of_divisionRing
IsScalarTower.of_algHom
Cardinal.lift_id
Bot.bot
OrderBot.toBot
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
bot_le
dvd_of_mul_left_eq
dvd_of_mul_right_eq
instAlgebraSubtypeMem
extendScalars
instModuleSubtypeMem_1
Subfield.relfinrank_eq_one_iff
MonoidWithZeroHom
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
Cardinal.commSemiring
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Cardinal.toNat
Subfield.relfinrank_self
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
le_top
rank_bot
one_mul
Cardinal.instOne
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Subfield.relrank_eq_of_inf_eq
Subfield.relrank_eq_one_iff
Subfield.relrank_eq_rank_of_le
Subfield.relrank_inf_mul_relrank
Subfield.relrank_mul_rank_top
Subfield.relrank_mul_relrank
Subfield.relrank_self
rank_top
mul_one
Subfield
Field.toDivisionRing
DivisionRing.toDivisionSemiring
RingHom.fieldRange
instMin
map_comap_eq
RingHom.fieldRange_eq_map
inf_assoc
map_inf
top_inf_eq
inf_left_comm
le_refl
RingHom
RingHom.instFunLike
Algebra.lift_rank_eq_of_equiv_equiv
RingHom.injective
DivisionRing.isSimpleRing
toAlgebra
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.module'
SubsemiringClass.toCommSemiring
DivisionRing.toRing
Field.toCommRing
instMulActionSubtypeMem
Cardinal.toNat_eq_one
map_one
MonoidHomClass.toOneHomClass
instTop
relrank.eq_1
IntermediateField.rank_eq_one_iff
extendScalars_toSubfield
IntermediateField.bot_toSubfield
algebraMap_ofSubfield
fieldRange_subtype
right_eq_inf
IsScalarTower.of_algebraMap_eq'
LE.le.trans
extendScalars_self
IntermediateField.rank_bot
extendScalars_top
LinearEquiv.rank_eq
---
← Back to Index