Documentation Verification Report

Relrank

📁 Source: Mathlib/FieldTheory/Relrank.lean

Statistics

MetricCount
Definitionsrelfinrank, relrank, relfinrank, relrank
4
Theoremsfinrank_bot_mul_relfinrank, finrank_comap, inf_relfinrank_left, inf_relfinrank_right, inf_relrank_left, inf_relrank_right, lift_rank_comap, lift_relrank_comap, lift_relrank_comap_comap_eq_lift_relrank_inf, lift_relrank_comap_comap_eq_lift_relrank_of_le, lift_relrank_comap_comap_eq_lift_relrank_of_surjective, lift_relrank_map_map, rank_bot_mul_relrank, rank_comap, relfinrank_bot_left, relfinrank_bot_right, relfinrank_comap, relfinrank_comap_comap_eq_relfinrank_inf, relfinrank_comap_comap_eq_relfinrank_of_le, relfinrank_comap_comap_eq_relfinrank_of_surjective, relfinrank_dvd_finrank_bot, relfinrank_dvd_finrank_top_of_le, relfinrank_dvd_of_le_left, relfinrank_eq_finrank_of_le, relfinrank_eq_of_inf_eq, relfinrank_eq_one_iff, relfinrank_eq_one_of_le, relfinrank_eq_toNat_relrank, relfinrank_inf_mul_relfinrank, relfinrank_inf_mul_relfinrank_of_le, relfinrank_map_map, relfinrank_mul_finrank_top, relfinrank_mul_relfinrank, relfinrank_mul_relfinrank_eq_inf_relfinrank, relfinrank_self, relfinrank_top_left, relfinrank_top_right, relrank_bot_left, relrank_bot_right, relrank_comap, relrank_comap_comap_eq_relrank_inf, relrank_comap_comap_eq_relrank_of_le, relrank_comap_comap_eq_relrank_of_surjective, relrank_dvd_of_le_left, relrank_dvd_rank_bot, relrank_dvd_rank_top_of_le, relrank_eq_of_inf_eq, relrank_eq_one_iff, relrank_eq_one_of_le, relrank_eq_rank_of_le, relrank_inf_mul_relrank, relrank_inf_mul_relrank_of_le, relrank_map_map, relrank_mul_rank_top, relrank_mul_relrank, relrank_mul_relrank_eq_inf_relrank, relrank_self, relrank_top_left, relrank_top_right, finrank_comap, inf_relfinrank_left, inf_relfinrank_right, inf_relrank_left, inf_relrank_right, lift_rank_comap, lift_relrank_comap, lift_relrank_comap_comap_eq_lift_relrank_inf, lift_relrank_comap_comap_eq_lift_relrank_of_le, lift_relrank_comap_comap_eq_lift_relrank_of_surjective, lift_relrank_map_map, rank_comap, relfinrank_comap, relfinrank_comap_comap_eq_relfinrank_inf, relfinrank_comap_comap_eq_relfinrank_of_le, relfinrank_comap_comap_eq_relfinrank_of_surjective, relfinrank_dvd_finrank_top_of_le, relfinrank_dvd_of_le_left, relfinrank_eq_finrank_of_le, relfinrank_eq_of_inf_eq, relfinrank_eq_one_iff, relfinrank_eq_one_of_le, relfinrank_eq_toNat_relrank, relfinrank_inf_mul_relfinrank, relfinrank_inf_mul_relfinrank_of_le, relfinrank_map_map, relfinrank_mul_finrank_top, relfinrank_mul_relfinrank, relfinrank_mul_relfinrank_eq_inf_relfinrank, relfinrank_self, relfinrank_top_left, relfinrank_top_right, relrank_comap, relrank_comap_comap_eq_relrank_inf, relrank_comap_comap_eq_relrank_of_le, relrank_comap_comap_eq_relrank_of_surjective, relrank_dvd_of_le_left, relrank_dvd_rank_top_of_le, relrank_eq_of_inf_eq, relrank_eq_one_iff, relrank_eq_one_of_le, relrank_eq_rank_of_le, relrank_inf_mul_relrank, relrank_inf_mul_relrank_of_le, relrank_map_map, relrank_mul_rank_top, relrank_mul_relrank, relrank_mul_relrank_eq_inf_relrank, relrank_self, relrank_top_left, relrank_top_right
110
Total114

IntermediateField

Definitions

NameCategoryTheorems
relfinrank 📖CompOp
27 mathmath: relfinrank_comap, relfinrank_mul_finrank_top, relfinrank_bot_right, relfinrank_comap_comap_eq_relfinrank_of_le, relfinrank_top_right, relfinrank_dvd_finrank_bot, inf_relfinrank_right, relfinrank_self, relfinrank_dvd_of_le_left, relfinrank_eq_one_of_le, relfinrank_eq_toNat_relrank, finrank_bot_mul_relfinrank, relfinrank_inf_mul_relfinrank, relfinrank_bot_left, relfinrank_map_map, relfinrank_mul_relfinrank_eq_inf_relfinrank, finrank_comap, relfinrank_eq_finrank_of_le, relfinrank_inf_mul_relfinrank_of_le, relfinrank_mul_relfinrank, relfinrank_dvd_finrank_top_of_le, relfinrank_comap_comap_eq_relfinrank_of_surjective, relfinrank_eq_of_inf_eq, relfinrank_comap_comap_eq_relfinrank_inf, inf_relfinrank_left, relfinrank_top_left, relfinrank_eq_one_iff
relrank 📖CompOp
33 mathmath: relrank_comap_comap_eq_relrank_inf, relrank_mul_rank_top, relrank_eq_one_iff, inf_relrank_right, relrank_eq_of_inf_eq, relrank_top_right, relrank_comap, relrank_dvd_of_le_left, relrank_top_left, lift_relrank_comap, relfinrank_eq_toNat_relrank, relrank_dvd_rank_top_of_le, relrank_dvd_rank_bot, relrank_eq_one_of_le, relrank_comap_comap_eq_relrank_of_le, relrank_inf_mul_relrank_of_le, relrank_mul_relrank, lift_relrank_comap_comap_eq_lift_relrank_of_le, relrank_self, relrank_bot_right, lift_relrank_comap_comap_eq_lift_relrank_inf, relrank_eq_rank_of_le, relrank_map_map, lift_relrank_comap_comap_eq_lift_relrank_of_surjective, rank_comap, rank_bot_mul_relrank, lift_rank_comap, inf_relrank_left, lift_relrank_map_map, relrank_inf_mul_relrank, relrank_bot_left, relrank_mul_relrank_eq_inf_relrank, relrank_comap_comap_eq_relrank_of_surjective

Theorems

NameKindAssumesProvesValidatesDepends On
finrank_bot_mul_relfinrank 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Module.finrank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
relfinrank
IsScalarTower.left
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
rank_bot_mul_relrank
finrank_comap 📖mathematicalModule.finrank
IntermediateField
SetLike.instMembership
instSetLike
comap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
relfinrank
AlgHom.fieldRange
Cardinal.toNat_lift
lift_rank_comap
inf_relfinrank_left 📖mathematicalrelfinrank
IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
inf_relrank_left
inf_relfinrank_right 📖mathematicalrelfinrank
IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
inf_relrank_right
inf_relrank_left 📖mathematicalrelrank
IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
inf_comm
inf_relrank_right
inf_relrank_right 📖mathematicalrelrank
IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
relrank_eq_rank_of_le
inf_le_right
lift_rank_comap 📖mathematicalCardinal.lift
Module.rank
IntermediateField
SetLike.instMembership
instSetLike
comap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
relrank
AlgHom.fieldRange
Subfield.lift_rank_comap
lift_relrank_comap 📖mathematicalCardinal.lift
relrank
comap
map
Subfield.lift_relrank_comap
lift_relrank_comap_comap_eq_lift_relrank_inf 📖mathematicalCardinal.lift
relrank
comap
IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
AlgHom.fieldRange
Subfield.lift_relrank_comap_comap_eq_lift_relrank_inf
lift_relrank_comap_comap_eq_lift_relrank_of_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AlgHom.fieldRange
Cardinal.lift
relrank
comap
inf_of_le_left
lift_relrank_comap_comap_eq_lift_relrank_inf
lift_relrank_comap_comap_eq_lift_relrank_of_surjective 📖mathematicalDFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
Cardinal.lift
relrank
comap
lift_relrank_comap_comap_eq_lift_relrank_of_le
lift_relrank_map_map 📖mathematicalCardinal.lift
relrank
map
lift_relrank_comap
comap_map
rank_bot_mul_relrank 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
Cardinal.instMul
Module.rank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
relrank
IsScalarTower.left
relrank_eq_rank_of_le
rank_mul_rank
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
Module.Free.of_divisionRing
IsScalarTower.of_algHom
rank_comap 📖mathematicalModule.rank
IntermediateField
SetLike.instMembership
instSetLike
comap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
relrank
AlgHom.fieldRange
Cardinal.lift_id
lift_rank_comap
relfinrank_bot_left 📖mathematicalrelfinrank
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Module.finrank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
IsScalarTower.left
relrank_bot_left
relfinrank_bot_right 📖mathematicalrelfinrank
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
relfinrank_eq_one_of_le
bot_le
relfinrank_comap 📖mathematicalrelfinrank
comap
map
Cardinal.toNat_lift
lift_relrank_comap
relfinrank_comap_comap_eq_relfinrank_inf 📖mathematicalrelfinrank
comap
IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
AlgHom.fieldRange
Cardinal.toNat_lift
lift_relrank_comap_comap_eq_lift_relrank_inf
relfinrank_comap_comap_eq_relfinrank_of_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AlgHom.fieldRange
relfinrank
comap
Cardinal.toNat_lift
lift_relrank_comap_comap_eq_lift_relrank_of_le
relfinrank_comap_comap_eq_relfinrank_of_surjective 📖mathematicalDFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
relfinrank
comap
Cardinal.toNat_lift
lift_relrank_comap_comap_eq_lift_relrank_of_surjective
relfinrank_dvd_finrank_bot 📖mathematicalrelfinrank
Module.finrank
IntermediateField
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
IsScalarTower.left
dvd_of_mul_left_eq
finrank_bot_mul_relfinrank
inf_le_right
inf_relfinrank_right
relfinrank_dvd_finrank_top_of_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrank
Module.finrank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
dvd_of_mul_right_eq
relfinrank_mul_finrank_top
relfinrank_dvd_of_le_left 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrankdvd_of_mul_left_eq
relfinrank_inf_mul_relfinrank_of_le
relfinrank_eq_finrank_of_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrank
Module.finrank
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
extendScalars
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem_1
relrank_eq_rank_of_le
relfinrank_eq_of_inf_eq 📖mathematicalIntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
relfinrankrelrank_eq_of_inf_eq
relfinrank_eq_one_iff 📖mathematicalrelfinrank
IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Subfield.relfinrank_eq_one_iff
relfinrank_eq_one_of_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrankrelfinrank_eq_one_iff
relfinrank_eq_toNat_relrank 📖mathematicalrelfinrank
DFunLike.coe
MonoidWithZeroHom
Cardinal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Cardinal.commSemiring
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Cardinal.toNat
relrank
relfinrank_inf_mul_relfinrank 📖mathematicalrelfinrank
IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
relrank_inf_mul_relrank
relfinrank_inf_mul_relfinrank_of_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrank
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
relrank_inf_mul_relrank_of_le
relfinrank_map_map 📖mathematicalrelfinrank
map
Cardinal.toNat_lift
lift_relrank_map_map
relfinrank_mul_finrank_top 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrank
Module.finrank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
relrank_mul_rank_top
relfinrank_mul_relfinrank 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrankmap_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
relrank_mul_relrank
relfinrank_mul_relfinrank_eq_inf_relfinrank 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrank
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
relrank_mul_relrank_eq_inf_relrank
relfinrank_self 📖mathematicalrelfinrankSubfield.relfinrank_self
relfinrank_top_left 📖mathematicalrelfinrank
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
relfinrank_eq_one_of_le
le_top
relfinrank_top_right 📖mathematicalrelfinrank
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Module.finrank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
relrank_top_right
relrank_bot_left 📖mathematicalrelrank
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Module.rank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
IsScalarTower.left
rank_bot_mul_relrank
bot_le
rank_bot
one_mul
relrank_bot_right 📖mathematicalrelrank
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Cardinal
Cardinal.instOne
relrank_eq_one_of_le
bot_le
relrank_comap 📖mathematicalrelrank
comap
map
Cardinal.lift_id
lift_relrank_comap
relrank_comap_comap_eq_relrank_inf 📖mathematicalrelrank
comap
IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
AlgHom.fieldRange
Cardinal.lift_id
lift_relrank_comap_comap_eq_lift_relrank_inf
relrank_comap_comap_eq_relrank_of_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AlgHom.fieldRange
relrank
comap
Cardinal.lift_id
lift_relrank_comap_comap_eq_lift_relrank_of_le
relrank_comap_comap_eq_relrank_of_surjective 📖mathematicalDFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
relrank
comap
Cardinal.lift_id
lift_relrank_comap_comap_eq_lift_relrank_of_surjective
relrank_dvd_of_le_left 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Cardinal.commSemiring
relrank
dvd_of_mul_left_eq
relrank_inf_mul_relrank_of_le
relrank_dvd_rank_bot 📖mathematicalCardinal
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Cardinal.commSemiring
relrank
Module.rank
IntermediateField
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
IsScalarTower.left
dvd_of_mul_left_eq
rank_bot_mul_relrank
inf_le_right
inf_relrank_right
relrank_dvd_rank_top_of_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Cardinal.commSemiring
relrank
Module.rank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
dvd_of_mul_right_eq
relrank_mul_rank_top
relrank_eq_of_inf_eq 📖mathematicalIntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
relrankSubfield.relrank_eq_of_inf_eq
relrank_eq_one_iff 📖mathematicalrelrank
Cardinal
Cardinal.instOne
IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Subfield.relrank_eq_one_iff
relrank_eq_one_of_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relrank
Cardinal
Cardinal.instOne
relrank_eq_one_iff
relrank_eq_rank_of_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relrank
Module.rank
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
extendScalars
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem_1
Subfield.relrank_eq_rank_of_le
relrank_inf_mul_relrank 📖mathematicalCardinal
Cardinal.instMul
relrank
IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subfield.relrank_inf_mul_relrank
relrank_inf_mul_relrank_of_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
Cardinal.instMul
relrank
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
inf_of_le_left
relrank_inf_mul_relrank
relrank_map_map 📖mathematicalrelrank
map
Cardinal.lift_id
lift_relrank_map_map
relrank_mul_rank_top 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
Cardinal.instMul
relrank
Module.rank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
Subfield.relrank_mul_rank_top
relrank_mul_relrank 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
Cardinal.instMul
relrank
Subfield.relrank_mul_relrank
relrank_mul_relrank_eq_inf_relrank 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
Cardinal.instMul
relrank
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
inf_of_le_left
relrank_inf_mul_relrank
relrank_self 📖mathematicalrelrank
Cardinal
Cardinal.instOne
Subfield.relrank_self
relrank_top_left 📖mathematicalrelrank
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Cardinal
Cardinal.instOne
relrank_eq_one_of_le
le_top
relrank_top_right 📖mathematicalrelrank
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Module.rank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
relrank_mul_rank_top
le_top
rank_top
mul_one

Subfield

Definitions

NameCategoryTheorems
relfinrank 📖CompOp
23 mathmath: relfinrank_eq_one_iff, relfinrank_mul_finrank_top, relfinrank_eq_finrank_of_le, relfinrank_mul_relfinrank_eq_inf_relfinrank, relfinrank_top_left, relfinrank_inf_mul_relfinrank_of_le, relfinrank_comap_comap_eq_relfinrank_of_le, finrank_comap, relfinrank_mul_relfinrank, relfinrank_comap_comap_eq_relfinrank_inf, inf_relfinrank_left, relfinrank_top_right, relfinrank_inf_mul_relfinrank, relfinrank_eq_one_of_le, relfinrank_eq_toNat_relrank, relfinrank_dvd_of_le_left, inf_relfinrank_right, relfinrank_comap, relfinrank_dvd_finrank_top_of_le, relfinrank_map_map, relfinrank_comap_comap_eq_relfinrank_of_surjective, relfinrank_eq_of_inf_eq, relfinrank_self
relrank 📖CompOp
29 mathmath: rank_comap, inf_relrank_left, relrank_comap_comap_eq_relrank_of_surjective, relrank_dvd_of_le_left, lift_relrank_comap_comap_eq_lift_relrank_of_surjective, relrank_eq_one_of_le, relrank_mul_rank_top, lift_relrank_map_map, relrank_top_left, relrank_eq_of_inf_eq, relrank_comap, relrank_comap_comap_eq_relrank_inf, lift_relrank_comap_comap_eq_lift_relrank_of_le, relrank_mul_relrank_eq_inf_relrank, relrank_comap_comap_eq_relrank_of_le, relrank_map_map, relrank_inf_mul_relrank, relfinrank_eq_toNat_relrank, relrank_inf_mul_relrank_of_le, relrank_dvd_rank_top_of_le, lift_relrank_comap, relrank_top_right, relrank_eq_rank_of_le, lift_rank_comap, relrank_eq_one_iff, relrank_mul_relrank, lift_relrank_comap_comap_eq_lift_relrank_inf, inf_relrank_right, relrank_self

Theorems

NameKindAssumesProvesValidatesDepends On
finrank_comap 📖mathematicalModule.finrank
Subfield
Field.toDivisionRing
SetLike.instMembership
instSetLike
comap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
DivisionRing.toDivisionSemiring
relfinrank
RingHom.fieldRange
Cardinal.toNat_lift
lift_rank_comap
inf_relfinrank_left 📖mathematicalrelfinrank
Subfield
Field.toDivisionRing
instMin
inf_relrank_left
inf_relfinrank_right 📖mathematicalrelfinrank
Subfield
Field.toDivisionRing
instMin
inf_relrank_right
inf_relrank_left 📖mathematicalrelrank
Subfield
Field.toDivisionRing
instMin
inf_comm
inf_relrank_right
inf_relrank_right 📖mathematicalrelrank
Subfield
Field.toDivisionRing
instMin
relrank_eq_rank_of_le
inf_le_right
lift_rank_comap 📖mathematicalCardinal.lift
Module.rank
Subfield
Field.toDivisionRing
SetLike.instMembership
instSetLike
comap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
DivisionRing.toDivisionSemiring
relrank
RingHom.fieldRange
relrank_top_right
lift_relrank_comap
lift_relrank_comap 📖mathematicalCardinal.lift
relrank
comap
Field.toDivisionRing
map
lift_relrank_map_map
relrank_eq_of_inf_eq
map_comap_eq
RingHom.fieldRange_eq_map
inf_assoc
map_inf
top_inf_eq
lift_relrank_comap_comap_eq_lift_relrank_inf 📖mathematicalCardinal.lift
relrank
comap
Field.toDivisionRing
Subfield
instMin
RingHom.fieldRange
lift_relrank_map_map
map_comap_eq
relrank_eq_of_inf_eq
inf_assoc
inf_left_comm
inf_of_le_left
le_refl
lift_relrank_comap_comap_eq_lift_relrank_of_le 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RingHom.fieldRange
Cardinal.lift
relrank
comap
inf_of_le_left
lift_relrank_comap_comap_eq_lift_relrank_inf
lift_relrank_comap_comap_eq_lift_relrank_of_surjective 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
Cardinal.lift
relrank
comap
Field.toDivisionRing
lift_relrank_comap_comap_eq_lift_relrank_of_le
lift_relrank_map_map 📖mathematicalCardinal.lift
relrank
map
Field.toDivisionRing
Algebra.lift_rank_eq_of_equiv_equiv
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsScalarTower.left
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_inf
rank_comap 📖mathematicalModule.rank
Subfield
Field.toDivisionRing
SetLike.instMembership
instSetLike
comap
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
DivisionRing.toDivisionSemiring
relrank
RingHom.fieldRange
Cardinal.lift_id
lift_rank_comap
relfinrank_comap 📖mathematicalrelfinrank
comap
Field.toDivisionRing
map
Cardinal.toNat_lift
lift_relrank_comap
relfinrank_comap_comap_eq_relfinrank_inf 📖mathematicalrelfinrank
comap
Field.toDivisionRing
Subfield
instMin
RingHom.fieldRange
Cardinal.toNat_lift
lift_relrank_comap_comap_eq_lift_relrank_inf
relfinrank_comap_comap_eq_relfinrank_of_le 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RingHom.fieldRange
relfinrank
comap
Cardinal.toNat_lift
lift_relrank_comap_comap_eq_lift_relrank_of_le
relfinrank_comap_comap_eq_relfinrank_of_surjective 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
relfinrank
comap
Field.toDivisionRing
Cardinal.toNat_lift
lift_relrank_comap_comap_eq_lift_relrank_of_surjective
relfinrank_dvd_finrank_top_of_le 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrank
Module.finrank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
DivisionRing.toDivisionSemiring
dvd_of_mul_right_eq
relfinrank_mul_finrank_top
relfinrank_dvd_of_le_left 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrankdvd_of_mul_left_eq
relfinrank_inf_mul_relfinrank_of_le
relfinrank_eq_finrank_of_le 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrank
Module.finrank
SetLike.instMembership
instSetLike
IntermediateField
toField
toAlgebra
IntermediateField.instSetLike
extendScalars
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.toField
IntermediateField.module'
Algebra.toSMul
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
instSubfieldClass
CommSemiring.toSemiring
Algebra.id
instModuleSubtypeMem
Field.toCommRing
Semiring.toModule
DivisionRing.toDivisionSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instMulActionSubtypeMem
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsScalarTower.left
relrank_eq_rank_of_le
relfinrank_eq_of_inf_eq 📖mathematicalSubfield
Field.toDivisionRing
instMin
relfinrankrelrank_eq_of_inf_eq
relfinrank_eq_one_iff 📖mathematicalrelfinrank
Subfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrank_eq_toNat_relrank
Cardinal.toNat_eq_one
relrank_eq_one_iff
relfinrank_eq_one_of_le 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrankrelfinrank_eq_one_iff
relfinrank_eq_toNat_relrank 📖mathematicalrelfinrank
DFunLike.coe
MonoidWithZeroHom
Cardinal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Cardinal.commSemiring
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Cardinal.toNat
relrank
relfinrank_inf_mul_relfinrank 📖mathematicalrelfinrank
Subfield
Field.toDivisionRing
instMin
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
relrank_inf_mul_relrank
relfinrank_inf_mul_relfinrank_of_le 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrank
instMin
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
relrank_inf_mul_relrank_of_le
relfinrank_map_map 📖mathematicalrelfinrank
map
Field.toDivisionRing
Cardinal.toNat_lift
lift_relrank_map_map
relfinrank_mul_finrank_top 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrank
Module.finrank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
DivisionRing.toDivisionSemiring
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
relrank_mul_rank_top
relfinrank_mul_relfinrank 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrankmap_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
relrank_mul_relrank
relfinrank_mul_relfinrank_eq_inf_relfinrank 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relfinrank
instMin
map_mul
MonoidHomClass.toMulHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
relrank_mul_relrank_eq_inf_relrank
relfinrank_self 📖mathematicalrelfinrankrelrank_self
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
relfinrank_top_left 📖mathematicalrelfinrank
Top.top
Subfield
Field.toDivisionRing
instTop
relfinrank_eq_one_of_le
le_top
relfinrank_top_right 📖mathematicalrelfinrank
Top.top
Subfield
Field.toDivisionRing
instTop
Module.finrank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
DivisionRing.toDivisionSemiring
relrank_top_right
relrank_comap 📖mathematicalrelrank
comap
Field.toDivisionRing
map
Cardinal.lift_id
lift_relrank_comap
relrank_comap_comap_eq_relrank_inf 📖mathematicalrelrank
comap
Field.toDivisionRing
Subfield
instMin
RingHom.fieldRange
Cardinal.lift_id
lift_relrank_comap_comap_eq_lift_relrank_inf
relrank_comap_comap_eq_relrank_of_le 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
RingHom.fieldRange
relrank
comap
Cardinal.lift_id
lift_relrank_comap_comap_eq_lift_relrank_of_le
relrank_comap_comap_eq_relrank_of_surjective 📖mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
relrank
comap
Field.toDivisionRing
Cardinal.lift_id
lift_relrank_comap_comap_eq_lift_relrank_of_surjective
relrank_dvd_of_le_left 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Cardinal.commSemiring
relrank
dvd_of_mul_left_eq
relrank_inf_mul_relrank_of_le
relrank_dvd_rank_top_of_le 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Cardinal.commSemiring
relrank
Module.rank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
DivisionRing.toDivisionSemiring
dvd_of_mul_right_eq
relrank_mul_rank_top
relrank_eq_of_inf_eq 📖mathematicalSubfield
Field.toDivisionRing
instMin
relrankSubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
relrank_eq_one_iff 📖mathematicalrelrank
Cardinal
Cardinal.instOne
Subfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relrank.eq_1
IsScalarTower.left
IntermediateField.rank_eq_one_iff
extendScalars_toSubfield
IntermediateField.bot_toSubfield
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
algebraMap_ofSubfield
fieldRange_subtype
right_eq_inf
relrank_eq_one_of_le 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relrank
Cardinal
Cardinal.instOne
relrank_eq_one_iff
relrank_eq_rank_of_le 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
relrank
Module.rank
SetLike.instMembership
instSetLike
IntermediateField
toField
toAlgebra
IntermediateField.instSetLike
extendScalars
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.toField
IntermediateField.module'
Algebra.toSMul
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
instSubfieldClass
CommSemiring.toSemiring
Algebra.id
instModuleSubtypeMem
Field.toCommRing
Semiring.toModule
DivisionRing.toDivisionSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instMulActionSubtypeMem
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsScalarTower.left
relrank.eq_1
inf_of_le_left
relrank_inf_mul_relrank 📖mathematicalCardinal
Cardinal.instMul
relrank
Subfield
Field.toDivisionRing
instMin
inf_relrank_right
inf_assoc
relrank_mul_relrank
inf_le_right
relrank_inf_mul_relrank_of_le 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
Cardinal.instMul
relrank
instMin
inf_of_le_left
relrank_inf_mul_relrank
relrank_map_map 📖mathematicalrelrank
map
Field.toDivisionRing
Cardinal.lift_id
lift_relrank_map_map
relrank_mul_rank_top 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
Cardinal.instMul
relrank
Module.rank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
DivisionRing.toDivisionSemiring
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsScalarTower.left
relrank_eq_rank_of_le
rank_mul_rank
commRing_strongRankCondition
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
IsScalarTower.of_algebraMap_eq'
relrank_mul_relrank 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
Cardinal.instMul
relrank
LE.le.trans
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsScalarTower.left
relrank_eq_rank_of_le
rank_mul_rank
commRing_strongRankCondition
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
IsScalarTower.of_algebraMap_eq'
relrank_mul_relrank_eq_inf_relrank 📖mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Cardinal
Cardinal.instMul
relrank
instMin
inf_of_le_left
relrank_inf_mul_relrank
relrank_self 📖mathematicalrelrank
Cardinal
Cardinal.instOne
le_refl
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsScalarTower.left
relrank_eq_rank_of_le
extendScalars_self
IntermediateField.rank_bot
relrank_top_left 📖mathematicalrelrank
Top.top
Subfield
Field.toDivisionRing
instTop
Cardinal
Cardinal.instOne
relrank_eq_one_of_le
le_top
relrank_top_right 📖mathematicalrelrank
Top.top
Subfield
Field.toDivisionRing
instTop
Module.rank
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
DivisionRing.toDivisionSemiring
le_top
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsScalarTower.left
relrank_eq_rank_of_le
extendScalars_top
LinearEquiv.rank_eq

---

← Back to Index