Documentation Verification Report

Separable

πŸ“ Source: Mathlib/FieldTheory/Separable.lean

Statistics

MetricCount
DefinitionsIsSeparable, IsSeparable, Separable
3
TheoremsisSeparable, isSeparable_iff, isSeparable_iff, card_of_powerBasis, natCard_of_powerBasis, isAlgebraic, isIntegral, isSeparable, isSeparable', of_algHom, of_equiv_equiv, of_integral, isSeparable_def, isSeparable_iff, isSeparable_self, isSeparable_tower_bot_of_isSeparable, isSeparable_tower_top_of_isSeparable, separable, separable_iff, isSeparable_tower_bot, isSeparable_tower_top, separable, isIntegral, map, of_algHom, of_equiv_equiv, of_integral, tower_bot, tower_top, aeval_derivative_ne_zero, evalβ‚‚_derivative_ne_zero, inj_of_prod_X_sub_C, injective_of_prod_X_sub_C, isCoprime, map, mul, mul_unit, ne_zero, of_dvd, of_mul_left, of_mul_right, of_pow, of_pow', squarefree, unit_mul, X_pow_sub_C_separable_iff, X_pow_sub_one_separable_iff, card_rootSet_eq_natDegree, card_rootSet_eq_natDegree_iff_of_splits, count_roots_le_one, emultiplicity_le_one_of_separable, eq_X_sub_C_of_separable_of_root_eq, exists_finset_of_splits, exists_separable_of_irreducible, isUnit_of_self_mul_dvd_separable, isUnit_or_eq_zero_of_separable_expand, nodup_aroots_iff_of_splits, nodup_of_separable_prod, nodup_roots, nodup_roots_iff_of_splits, not_separable_zero, rootMultiplicity_le_one_of_separable, separable_C, separable_C_mul_X_pow_add_C_mul_X_add_C, separable_C_mul_X_pow_add_C_mul_X_add_C', separable_X, separable_X_add_C, separable_X_pow_sub_C, separable_X_pow_sub_C', separable_X_pow_sub_C_unit, separable_X_sub_C, separable_def, separable_def', separable_gcd_left, separable_gcd_right, separable_iff_derivative_ne_zero, separable_map, separable_of_subsingleton, separable_one, separable_or, separable_prod, separable_prod', separable_prod_X_sub_C_iff, separable_prod_X_sub_C_iff', unique_separable_of_irreducible, isSeparable_iff, isSeparable_algebraMap, isSeparable_map_iff
88
Total91

AlgEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparable_iff πŸ“–mathematicalβ€”IsSeparable
DFunLike.coe
AlgEquiv
CommRing.toCommSemiring
Ring.toSemiring
instFunLike
β€”minpoly.algEquiv_eq

AlgEquiv.Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparable πŸ“–mathematicalβ€”Algebra.IsSeparableβ€”AlgEquiv.isSeparable_iff
Algebra.IsSeparable.isSeparable
isSeparable_iff πŸ“–mathematicalβ€”Algebra.IsSeparableβ€”isSeparable

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
card_of_powerBasis πŸ“–mathematicalIsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
PowerBasis.gen
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
Fintype.card
AlgHom
CommRing.toCommSemiring
PowerBasis.AlgHom.fintype
instIsDomain
PowerBasis.dim
β€”instIsDomain
Fintype.card_eq_nat_card
natCard_of_powerBasis
natCard_of_powerBasis πŸ“–mathematicalIsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
PowerBasis.gen
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
Nat.card
AlgHom
CommRing.toCommSemiring
PowerBasis.dim
β€”instIsDomain
Nat.card_congr
Nat.subtype_card
Multiset.mem_toFinset
PowerBasis.natDegree_minpoly
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.natDegree_map
DivisionRing.isSimpleRing
Polynomial.Splits.natDegree_eq_card_roots
Multiset.toFinset_card_of_nodup
Polynomial.nodup_roots
Polynomial.separable_map

Algebra

Definitions

NameCategoryTheorems
IsSeparable πŸ“–CompData
59 mathmath: instIsSeparableResidueFieldOfFormallyUnramified, IsSeparable.of_equiv_equiv, FixedPoints.isSeparable, traceForm_nondegenerate_tfae, isSepClosure_iff, instIsSeparableQuotientIdealOfResidueField, instIsSeparableFractionRingLocalizationAlgebraMapSubmonoidPrimeCompl, FormallyUnramified.iff_map_maximalIdeal_eq, FractionRing.isSeparable_of_isLocalization, FormallyUnramified.iff_isSeparable, instIsSeparableResidueFieldOfQuotientIdeal, Subalgebra.isSeparable_iff, FormallyEtale.iff_isSeparable, Field.Emb.Cardinal.instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, le_separableClosure_iff, IsSepClosure.isSeparable, eq_separableClosure_iff, FiniteGaloisIntermediateField.instIsSeparableSubtypeMemIntermediateFieldMin_1, separableClosure.eq_top_iff, AlgebraicGeometry.FormallyUnramified.instIsSeparableCarrierResidueFieldCoeContinuousMapCarrierCarrierCommRingCatHomTopCatBaseOfLocallyOfFiniteType, isSeparable_tower_top_of_isSeparable, isUnramifiedAt_iff_map_eq, Ring.instIsSeparableFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_essFiniteType, isSeparable_iff, isSeparable_def, instIsSeparableResidueFieldOfIsUnramifiedAt, IntermediateField.isSeparable_adjoin_simple_iff_isSeparable, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_adjoin_eq_top, FormallyUnramified.isSeparable, exists_isTranscendenceBasis_and_isSeparable_of_perfectField, isGalois_iff, isSeparable_tower_bot_of_isSeparable, IntermediateField.isSeparable_tower_bot, IsAlgClosure.separable, instIsSeparableFractionRingAtPrimeLocalizationAlgebraMapSubmonoidPrimeCompl, perfectField_iff_isSeparable_algebraicClosure, FormallyEtale.iff_exists_algEquiv_prod, AlgEquiv.Algebra.isSeparable_iff, IntermediateField.isSeparable_adjoin_pair_of_isSeparable, IntermediateField.isSeparable_sup, isSeparable_self, separableClosure.isSeparable, Field.finSepDegree_eq_finrank_iff, isSeparable_iff_finInsepDegree_eq_one, AlgEquiv.Algebra.isSeparable, FiniteGaloisIntermediateField.instIsSeparableSubtypeMemIntermediateFieldMin, IsSeparable.of_algHom, isSeparable_residueField_iff, WithAbs.instIsSeparable, Etale.iff_exists_algEquiv_prod, IsSepClosure.separable, IsGalois.to_isSeparable, IntermediateField.isSeparable_tower_top, IsSeparable.trans, IsAlgebraic.isSeparable_of_perfectField, IsCyclotomicExtension.isSeparable, IsSeparable.of_integral, IntermediateField.isSeparable_adjoin_iff_isSeparable

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparable_def πŸ“–mathematicalβ€”IsSeparable
IsSeparable
β€”β€”
isSeparable_iff πŸ“–mathematicalβ€”IsSeparable
IsIntegral
IsSeparable
β€”IsSeparable.isIntegral
IsSeparable.isSeparable
isSeparable_self πŸ“–mathematicalβ€”IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
id
CommRing.toCommSemiring
β€”isSeparable_algebraMap
isSeparable_tower_bot_of_isSeparable πŸ“–mathematicalβ€”IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”IsSeparable.tower_bot
IsSeparable.isSeparable
isSeparable_tower_top_of_isSeparable πŸ“–mathematicalβ€”IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”IsSeparable.tower_top
IsSeparable.isSeparable

Algebra.IsSeparable

Theorems

NameKindAssumesProvesValidatesDepends On
isAlgebraic πŸ“–mathematicalβ€”Algebra.IsAlgebraicβ€”IsIntegral.isAlgebraic
isIntegral
isIntegral πŸ“–mathematicalβ€”IsIntegralβ€”IsSeparable.isIntegral
isSeparable
isSeparable πŸ“–mathematicalβ€”IsSeparableβ€”isSeparable'
isSeparable' πŸ“–mathematicalβ€”IsSeparableβ€”β€”
of_algHom πŸ“–mathematicalβ€”Algebra.IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”IsSeparable.of_algHom
isSeparable
of_equiv_equiv πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
algebraMap
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.IsSeparableβ€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
IsSeparable.of_equiv_equiv
isSeparable
RingEquiv.apply_symm_apply
of_integral πŸ“–mathematicalβ€”Algebra.IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”IsSeparable.of_integral

Associated

Theorems

NameKindAssumesProvesValidatesDepends On
separable πŸ“–β€”Associated
Polynomial
CommSemiring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.Separable
β€”β€”Polynomial.derivative_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Polynomial.derivative_one
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
separable_iff πŸ“–mathematicalAssociated
Polynomial
CommSemiring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.Separableβ€”separable
symm

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparable_tower_bot πŸ“–mathematicalβ€”Algebra.IsSeparable
IntermediateField
SetLike.instMembership
instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”Algebra.isSeparable_tower_bot_of_isSeparable
IsScalarTower.left
IsLocalRing.toNontrivial
Field.instIsLocalRing
isScalarTower_mid'
isSeparable_tower_top πŸ“–mathematicalβ€”Algebra.IsSeparable
IntermediateField
SetLike.instMembership
instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
DivisionRing.toRing
Field.toDivisionRing
instAlgebraSubtypeMem
Ring.toSemiring
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
β€”Algebra.isSeparable_tower_top_of_isSeparable
IsScalarTower.left
isScalarTower_mid'

Irreducible

Theorems

NameKindAssumesProvesValidatesDepends On
separable πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.Separable
Semifield.toCommSemiring
β€”Polynomial.separable_iff_derivative_ne_zero
Polynomial.degree_eq_bot
Polynomial.degree_derivative_eq
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
instIsDomain
natDegree_pos

IsSeparable

Theorems

NameKindAssumesProvesValidatesDepends On
isIntegral πŸ“–mathematicalIsSeparableIsIntegralβ€”subsingleton_or_nontrivial
Polynomial.monic_one
Module.subsingleton
of_not_not
Polynomial.Separable.ne_zero
minpoly.eq_zero
map πŸ“–β€”DFunLike.coe
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
AlgHom.funLike
IsSeparable
β€”β€”isSeparable_map_iff
of_algHom πŸ“–β€”IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
β€”β€”tower_bot
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsScalarTower.of_algebraMap_eq
AlgHom.commutes
of_equiv_equiv πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
algebraMap
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
IsSeparable
DFunLike.coeβ€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
Algebra.commutes
RingEquiv.map_mul'
RingEquiv.map_add'
RingEquiv.apply_symm_apply
DFunLike.congr_fun
AlgEquiv.isSeparable_iff
tower_top
IsScalarTower.of_algebraMap_eq
RingHom.congr_arg
RingEquiv.symm_apply_apply
of_integral πŸ“–mathematicalβ€”IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Irreducible.separable
minpoly.irreducible
instIsDomain
Algebra.IsIntegral.isIntegral
tower_bot πŸ“–mathematicalIsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
RingHom.instFunLike
algebraMap
DivisionRing.toRing
Field.toDivisionRing
β€”minpoly.dvd
Polynomial.aeval_algebraMap_eq_zero_iff
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
minpoly.aeval
Polynomial.Separable.of_mul_left
tower_top πŸ“–mathematicalIsSeparableEuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Polynomial.Separable.of_dvd
Polynomial.Separable.map
minpoly.dvd_map_of_isScalarTower

Polynomial

Definitions

NameCategoryTheorems
Separable πŸ“–MathDef
37 mathmath: separable_X_add_C, separable_X_pow_sub_C_unit, PerfectField.separable_of_irreducible, ConjRootClass.separable_minpoly, separable_X_pow_sub_C_of_irreducible, separable_X_pow_sub_C, nodup_aroots_iff_of_splits, separable_or, X_pow_sub_C_separable_iff, card_rootSet_eq_natDegree_iff_of_splits, not_separable_zero, Associated.separable_iff, separable_X, separable_C_mul_X_pow_add_C_mul_X_add_C', separable_X_pow_sub_C', natSepDegree_eq_natDegree_iff, IsGalois.is_separable_splitting_field, separable_def', separable_one, IsPrimitiveRoot.separable_minpoly_mod, separable_prod_X_sub_C_iff', separable_prod_X_sub_C_iff, X_pow_sub_one_separable_iff, separable_C, separable_def, Irreducible.separable, PerfectField.separable_iff_squarefree, separable_iff_derivative_ne_zero, exists_separable_of_irreducible, separable_of_subsingleton, nodup_roots_iff_of_splits, separable_cyclotomic, IsGalois.tfae, separable_C_mul_X_pow_add_C_mul_X_add_C, separable_X_sub_C, separable_map, galois_poly_separable

Theorems

NameKindAssumesProvesValidatesDepends On
X_pow_sub_C_separable_iff πŸ“–mathematicalβ€”Separable
Semifield.toCommSemiring
Field.toSemifield
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”not_isUnit_of_natDegree_pos
IsDomain.to_noZeroDivisors
instIsDomain
natDegree_sub_C
natDegree_pow
natDegree_X
IsLocalRing.toNontrivial
Field.instIsLocalRing
mul_one
derivative_sub
derivative_X_pow
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.zero_mul
derivative_C
sub_self
separable_X_pow_sub_C
X_pow_sub_one_separable_iff πŸ“–mathematicalβ€”Separable
Semifield.toCommSemiring
Field.toSemifield
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
instOne
β€”pow_zero
sub_self
IsLocalRing.toNontrivial
Field.instIsLocalRing
Nat.cast_zero
X_pow_sub_C_separable_iff
one_ne_zero
NeZero.one
card_rootSet_eq_natDegree πŸ“–mathematicalSeparable
Semifield.toCommSemiring
Field.toSemifield
Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
map
CommSemiring.toSemiring
algebraMap
Fintype.card
Set.Elem
rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
rootSetFintype
natDegree
β€”instIsDomain
Fintype.card_congr'
rootSet_def
Fintype.card_coe
Multiset.toFinset_card_of_nodup
nodup_roots
Separable.map
Splits.natDegree_eq_card_roots
natDegree_map
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
card_rootSet_eq_natDegree_iff_of_splits πŸ“–mathematicalSplits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
Fintype.card
Set.Elem
rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
rootSetFintype
natDegree
Separable
β€”instIsDomain
Fintype.card_congr'
rootSet_def
Fintype.card_coe
natDegree_map
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Splits.natDegree_eq_card_roots
nodup_aroots_iff_of_splits
count_roots_le_one πŸ“–mathematicalSeparable
CommRing.toCommSemiring
Multiset.count
roots
β€”count_roots
rootMultiplicity_le_one_of_separable
IsDomain.toNontrivial
emultiplicity_le_one_of_separable πŸ“–mathematicalIsUnit
Polynomial
CommSemiring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Separable
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
emultiplicity
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
instCommSemiringENat
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
isUnit_of_self_mul_dvd_separable
sq
pow_dvd_of_le_emultiplicity
Order.add_one_le_of_lt
eq_X_sub_C_of_separable_of_root_eq πŸ“–mathematicalSeparable
Semifield.toCommSemiring
Field.toSemifield
eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Splits
map
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial
instMul
semiring
C
leadingCoeff
instSub
DivisionRing.toRing
Field.toDivisionRing
X
β€”instIsDomain
not_separable_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
nodup_roots
Separable.map
Finset.nodup
Finset.eq_singleton_iff_unique_mem
mem_roots
map_ne_zero
DivisionRing.isSimpleRing
IsRoot.def
evalβ‚‚_eq_eval_map
evalβ‚‚_hom
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
map_injective
RingHom.injective
map_mul
map_C
map_sub
map_X
leadingCoeff_map
Splits.eq_X_sub_C_of_single_root
exists_finset_of_splits πŸ“–mathematicalSeparable
Semifield.toCommSemiring
Field.toSemifield
Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
map
Polynomial
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
leadingCoeff
Finset.prod
CommRing.toCommMonoid
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instSub
DivisionRing.toRing
Field.toDivisionRing
X
β€”splits_iff_exists_multiset
Finset.prod_eq_multiset_prod
nodup_of_separable_prod
IsLocalRing.toNontrivial
Field.instIsLocalRing
Separable.of_mul_right
Separable.map
Multiset.toFinset_eq
leadingCoeff_map
DivisionRing.isSimpleRing
exists_separable_of_irreducible πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Separable
Semifield.toCommSemiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
Nat.instMonoid
β€”CharP.char_is_prime_or_zero
IsDomain.to_noZeroDivisors
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
Nat.strong_induction_on
separable_or
pow_zero
expand_one
Irreducible.ne_zero
C_0
isUnit_iff_ne_zero
separable_C
degree_le_zero_iff
natDegree_eq_zero_iff_degree_le_zero
natDegree_expand
MulZeroClass.zero_mul
mul_one
Nat.Prime.one_lt
Ne.bot_lt
expand_expand
pow_succ'
isUnit_of_self_mul_dvd_separable πŸ“–mathematicalSeparable
Polynomial
CommSemiring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
commSemiring
instMul
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”isCoprime_self
mul_add
Distrib.leftDistribClass
derivative_mul
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.mul_one
IsCoprime.of_mul_right_left
IsCoprime.of_mul_left_left
isUnit_or_eq_zero_of_separable_expand πŸ“–mathematicalSeparable
Semifield.toCommSemiring
Field.toSemifield
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
Nat.instMonoid
IsUnit
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”derivative_expand
Nat.cast_pow
CharP.cast_eq_zero
instCharP
zero_pow
MulZeroClass.zero_mul
MulZeroClass.mul_zero
isUnit_iff
IsDomain.to_noZeroDivisors
instIsDomain
isCoprime_zero_right
separable_def
expand_eq_C
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
isUnit_C
nodup_aroots_iff_of_splits πŸ“–mathematicalSplits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
Multiset.Nodup
aroots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Separable
β€”instIsDomain
nodup_roots_iff_of_splits
map_ne_zero
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
separable_map
nodup_of_separable_prod πŸ“–mathematicalSeparable
CommRing.toCommSemiring
Multiset.prod
Polynomial
CommSemiring.toSemiring
CommRing.toCommMonoid
commRing
Multiset.map
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Multiset.Nodupβ€”Multiset.nodup_iff_ne_cons_cons
not_isUnit_X_sub_C
isUnit_of_self_mul_dvd_separable
Multiset.map_cons
Multiset.prod_cons
mul_dvd_mul_left
dvd_mul_right
nodup_roots πŸ“–mathematicalSeparable
CommRing.toCommSemiring
Multiset.Nodup
roots
β€”Multiset.nodup_iff_count_le_one
count_roots_le_one
nodup_roots_iff_of_splits πŸ“–mathematicalSplits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Multiset.Nodup
roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Separable
Semifield.toCommSemiring
β€”instIsDomain
Function.mtr
Splits.exists_eval_eq_zero
Splits.of_dvd
GCDMonoid.gcd_dvd_left
isUnit_iff_degree_eq_zero
gcd_isUnit_iff
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
Separable.eq_1
LT.lt.trans_eq
one_lt_rootMultiplicity_iff_isRoot_gcd
count_roots
nodup_roots
not_separable_zero πŸ“–mathematicalβ€”Separable
Polynomial
CommSemiring.toSemiring
instZero
β€”MulZeroClass.mul_zero
derivative_zero
add_zero
NeZero.one
nontrivial
rootMultiplicity_le_one_of_separable πŸ“–mathematicalSeparable
CommRing.toCommSemiring
rootMultiplicity
CommRing.toRing
β€”rootMultiplicity_zero
Nat.instCanonicallyOrderedAdd
rootMultiplicity_eq_multiplicity
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Nat.cast_one
FiniteMultiplicity.emultiplicity_eq_multiplicity
finiteMultiplicity_X_sub_C
emultiplicity_le_one_of_separable
not_isUnit_X_sub_C
separable_C πŸ“–mathematicalβ€”Separable
DFunLike.coe
RingHom
Polynomial
CommSemiring.toSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”separable_def
derivative_C
isCoprime_zero_right
isUnit_C
separable_C_mul_X_pow_add_C_mul_X_add_C πŸ“–mathematicalAddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Separable
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
X
β€”IsUnit.exists_left_inv
map_add
SemilinearMapClass.toAddHomClass
LinearMap.semilinearMapClass
derivative_mul
derivative_C
MulZeroClass.zero_mul
derivative_X_pow
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
MulZeroClass.mul_zero
add_zero
derivative_X
mul_one
zero_add
right_distrib
Distrib.rightDistribClass
add_assoc
neg_mul
mul_comm
neg_add_cancel
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
separable_C_mul_X_pow_add_C_mul_X_add_C' πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Separable
Polynomial
instAdd
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
X
β€”separable_C_mul_X_pow_add_C_mul_X_add_C
CharP.cast_eq_zero_iff
separable_X πŸ“–mathematicalβ€”Separable
X
CommSemiring.toSemiring
β€”separable_def
derivative_X
isCoprime_one_right
separable_X_add_C πŸ“–mathematicalβ€”Separable
Polynomial
CommSemiring.toSemiring
instAdd
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”separable_def
derivative_add
derivative_X
derivative_C
add_zero
isCoprime_one_right
separable_X_pow_sub_C πŸ“–mathematicalβ€”Separable
Semifield.toCommSemiring
Field.toSemifield
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommSemiring.toSemiring
instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”separable_X_pow_sub_C_unit
separable_X_pow_sub_C' πŸ“–mathematicalβ€”Separable
Semifield.toCommSemiring
Field.toSemifield
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommSemiring.toSemiring
instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”separable_X_pow_sub_C
CharP.cast_eq_zero_iff
separable_X_pow_sub_C_unit πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
Separable
Polynomial
instSub
Monoid.toNatPow
semiring
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
Units.val
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Nat.cast_zero
NeZero.one
separable_def'
IsUnit.exists_left_inv
derivative_sub
derivative_C
sub_zero
derivative_pow
derivative_X
mul_one
RingHom.map_mul
C_eq_natCast
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Units.inv_mul
RingHom.map_one
sub_add_cancel
separable_X_sub_C πŸ“–mathematicalβ€”Separable
CommRing.toCommSemiring
Polynomial
CommSemiring.toSemiring
instSub
CommRing.toRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”sub_eq_add_neg
C_neg
separable_X_add_C
separable_def πŸ“–mathematicalβ€”Separable
IsCoprime
Polynomial
CommSemiring.toSemiring
commSemiring
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”β€”
separable_def' πŸ“–mathematicalβ€”Separable
Polynomial
CommSemiring.toSemiring
instAdd
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
instOne
β€”β€”
separable_gcd_left πŸ“–mathematicalSeparable
Semifield.toCommSemiring
Field.toSemifield
EuclideanDomain.gcd
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instEuclideanDomain
β€”Separable.of_dvd
EuclideanDomain.gcd_dvd_left
separable_gcd_right πŸ“–mathematicalSeparable
Semifield.toCommSemiring
Field.toSemifield
EuclideanDomain.gcd
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instEuclideanDomain
β€”Separable.of_dvd
EuclideanDomain.gcd_dvd_right
separable_iff_derivative_ne_zero πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Separable
Semifield.toCommSemiring
β€”Irreducible.not_isUnit
isCoprime_zero_right
EuclideanDomain.isCoprime_of_dvd
Irreducible.isUnit_or_isUnit
Units.mul_right_dvd
not_lt_of_ge
natDegree_le_of_dvd
IsDomain.to_noZeroDivisors
instIsDomain
natDegree_derivative_lt
derivative_of_natDegree_zero
separable_map πŸ“–mathematicalβ€”Separable
CommRing.toCommSemiring
map
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
Semifield.toCommSemiring
β€”Ideal.exists_maximal
Ideal.instIsTwoSided_1
Separable.map
isCoprime_map
derivative_map
separable_def
map_map
separable_of_subsingleton πŸ“–mathematicalβ€”Separableβ€”Unique.instSubsingleton
separable_one πŸ“–mathematicalβ€”Separable
Polynomial
CommSemiring.toSemiring
instOne
β€”isCoprime_one_left
separable_or πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Separable
Semifield.toCommSemiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
β€”natDegree_eq_zero_of_derivative_eq_zero
IsAddTorsionFree.of_isCancelMulZero_charZero
CharP.charP_to_charZero
IsDomain.toIsCancelMulZero
instIsDomain
LT.lt.ne'
natDegree_pos_iff_degree_pos
degree_pos_of_irreducible
separable_iff_derivative_ne_zero
Irreducible.of_map
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
isLocalHom_expand
expand_contract
IsDomain.to_noZeroDivisors
separable_prod πŸ“–mathematicalPairwise
Function.onFun
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
IsCoprime
commSemiring
Separable
Finset.prod
CommRing.toCommMonoid
commRing
Finset.univ
β€”separable_prod'
separable_prod' πŸ“–mathematicalIsCoprime
Polynomial
CommSemiring.toSemiring
CommRing.toCommSemiring
commSemiring
Separable
Finset.prod
CommRing.toCommMonoid
commRing
β€”Finset.induction_on
separable_one
Finset.prod_insert
Separable.mul
IsCoprime.prod_right
separable_prod_X_sub_C_iff πŸ“–mathematicalβ€”Separable
Semifield.toCommSemiring
Field.toSemifield
Finset.prod
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommRing.toCommMonoid
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Finset.univ
instSub
DivisionRing.toRing
Field.toDivisionRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”separable_prod_X_sub_C_iff'
separable_prod_X_sub_C_iff' πŸ“–mathematicalβ€”Separable
Semifield.toCommSemiring
Field.toSemifield
Finset.prod
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommRing.toCommMonoid
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instSub
DivisionRing.toRing
Field.toDivisionRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”Separable.inj_of_prod_X_sub_C
IsLocalRing.toNontrivial
Field.instIsLocalRing
Finset.prod_attach
separable_prod'
pairwise_coprime_X_sub_C
separable_X_sub_C
unique_separable_of_irreducible πŸ“–β€”Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
Separable
Semifield.toCommSemiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
Nat.instMonoid
β€”β€”le_iff_exists_add
Nat.instCanonicallyOrderedAdd
isUnit_or_eq_zero_of_separable_expand
isUnit_iff
IsDomain.to_noZeroDivisors
instIsDomain
isUnit_C
Irreducible.not_isUnit
expand_C
add_zero
pow_zero
expand_one
pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
expand_mul
pow_add
le_of_not_ge

Polynomial.Separable

Theorems

NameKindAssumesProvesValidatesDepends On
aeval_derivative_ne_zero πŸ“–β€”Polynomial.Separable
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”evalβ‚‚_derivative_ne_zero
evalβ‚‚_derivative_ne_zero πŸ“–β€”Polynomial.Separable
Polynomial.evalβ‚‚
CommSemiring.toSemiring
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”β€”Polynomial.evalβ‚‚_add
Polynomial.evalβ‚‚_mul
MulZeroClass.mul_zero
add_zero
Polynomial.evalβ‚‚_one
NeZero.one
inj_of_prod_X_sub_C πŸ“–β€”Polynomial.Separable
CommRing.toCommSemiring
Finset.prod
Polynomial
CommSemiring.toSemiring
CommRing.toCommMonoid
Polynomial.commRing
Polynomial.instSub
CommRing.toRing
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Finset
Finset.instMembership
β€”β€”of_pow
Polynomial.not_isUnit_X_sub_C
two_ne_zero
of_mul_left
sq
mul_assoc
Finset.prod_insert
Finset.notMem_erase
Finset.insert_erase
Finset.mem_erase_of_ne_of_mem
injective_of_prod_X_sub_C πŸ“–β€”Polynomial.Separable
CommRing.toCommSemiring
Finset.prod
Polynomial
CommSemiring.toSemiring
CommRing.toCommMonoid
Polynomial.commRing
Finset.univ
Polynomial.instSub
CommRing.toRing
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
β€”β€”inj_of_prod_X_sub_C
Finset.mem_univ
isCoprime πŸ“–mathematicalPolynomial.Separable
Polynomial
CommSemiring.toSemiring
Polynomial.instMul
IsCoprime
Polynomial.commSemiring
β€”IsCoprime.of_mul_left_left
IsCoprime.of_mul_right_right
IsCoprime.of_add_mul_left_right
Polynomial.derivative_mul
map πŸ“–mathematicalPolynomial.SeparablePolynomial.map
CommSemiring.toSemiring
β€”Polynomial.derivative_map
Polynomial.map_mul
Polynomial.map_add
Polynomial.map_one
mul πŸ“–mathematicalPolynomial.Separable
CommRing.toCommSemiring
IsCoprime
Polynomial
CommSemiring.toSemiring
Polynomial.commSemiring
Polynomial.instMulβ€”Polynomial.separable_def
Polynomial.derivative_mul
IsCoprime.mul_left
IsCoprime.add_mul_left_right
IsCoprime.mul_right
IsCoprime.mul_add_right_right
IsCoprime.symm
mul_unit πŸ“–mathematicalPolynomial.Separable
IsUnit
Polynomial
CommSemiring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instMulβ€”Associated.separable
associated_mul_unit_right
ne_zero πŸ“–β€”Polynomial.Separableβ€”β€”Polynomial.not_separable_zero
of_dvd πŸ“–β€”Polynomial.Separable
Polynomial
CommSemiring.toSemiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
CommSemiring.toNonUnitalCommSemiring
Polynomial.commSemiring
β€”β€”of_mul_left
of_mul_left πŸ“–β€”Polynomial.Separable
Polynomial
CommSemiring.toSemiring
Polynomial.instMul
β€”β€”IsCoprime.of_mul_left_left
IsCoprime.of_mul_right_left
IsCoprime.of_add_mul_left_right
Polynomial.derivative_mul
of_mul_right πŸ“–β€”Polynomial.Separable
Polynomial
CommSemiring.toSemiring
Polynomial.instMul
β€”β€”of_mul_left
mul_comm
of_pow πŸ“–β€”IsUnit
Polynomial
CommSemiring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.Separable
Monoid.toNatPow
β€”β€”of_pow'
of_pow' πŸ“–mathematicalPolynomial.Separable
Polynomial
CommSemiring.toSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
IsUnitβ€”pow_one
isCoprime_self
IsCoprime.of_mul_left_right
isCoprime
pow_succ
squarefree πŸ“–mathematicalPolynomial.SeparableSquarefree
Polynomial
CommSemiring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
β€”squarefree_iff_emultiplicity_le_one
Polynomial.emultiplicity_le_one_of_separable
unit_mul πŸ“–mathematicalIsUnit
Polynomial
CommSemiring.toSemiring
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.Separable
Polynomial.instMulβ€”Associated.separable
associated_unit_mul_right

Subalgebra

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparable_iff πŸ“–mathematicalβ€”Algebra.IsSeparable
Subalgebra
CommRing.toCommSemiring
Ring.toSemiring
SetLike.instMembership
instSetLike
toRing
algebra
IsSeparable
β€”isSeparable_map_iff
Subtype.val_injective

(root)

Definitions

NameCategoryTheorems
IsSeparable πŸ“–MathDef
20 mathmath: IntermediateField.isSeparable_of_mem_isSeparable, isSeparable_map_iff, Algebra.IsSeparable.isSeparable, Field.isSeparable_algebraMap, AlgEquiv.isSeparable_iff, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow', IsSeparable.of_integral, isSeparable_algebraMap, IntermediateField.finSepDegree_adjoin_simple_eq_finrank_iff, Subalgebra.isSeparable_iff, Algebra.isSeparable_iff, Algebra.isSeparable_def, IntermediateField.isSeparable_adjoin_simple_iff_isSeparable, Algebra.IsSeparable.isSeparable', JacobsonNoether.exists_separable_and_not_isCentral', exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow, mem_separableClosure_iff, IsGalois.separable, JacobsonNoether.exists_separable_and_not_isCentral, IntermediateField.isSeparable_adjoin_iff_isSeparable

Theorems

NameKindAssumesProvesValidatesDepends On
isSeparable_algebraMap πŸ“–mathematicalβ€”IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
RingHom.instFunLike
algebraMap
β€”Polynomial.Separable.of_dvd
Polynomial.separable_X_sub_C
minpoly.dvd
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.aeval_X
Polynomial.aeval_C
sub_self
isSeparable_map_iff πŸ“–mathematicalDFunLike.coe
AlgHom
CommRing.toCommSemiring
Ring.toSemiring
AlgHom.funLike
IsSeparableβ€”minpoly.algHom_eq

---

← Back to Index