Documentation Verification Report

SeparableClosure

📁 Source: Mathlib/FieldTheory/SeparableClosure.lean

Statistics

MetricCount
DefinitionsseparableClosure, finInsepDegree, insepDegree, sepDegree, SeparableClosure, separableClosure, algEquivOfAlgEquiv, separableClosureOperator
8
TheoremsfinInsepDegree_eq, insepDegree_eq, sepDegree_eq, finInsepDegree_def', finInsepDegree_eq_of_equiv, finInsepDegree_self, finInsepDegree_top_le_finInsepDegree_of_isScalarTower, insepDegree_eq_of_equiv, insepDegree_le_of_left_le, insepDegree_le_rank, insepDegree_self, insepDegree_top_le_insepDegree_of_isScalarTower, instNeZeroFinInsepDegree, instNeZeroInsepDegree, instNeZeroSepDegree, lift_insepDegree_eq_of_equiv, lift_sepDegree_eq_of_equiv, sepDegree_eq_of_equiv, sepDegree_le_rank, sepDegree_mul_insepDegree, sepDegree_self, exists_finset_maximalFor_isTranscendenceBasis_separableClosure, exists_finset_maximalFor_isTranscendenceBasis_separableClosure, finInsepDegree_bot, finInsepDegree_bot', finInsepDegree_le_of_left_le, finInsepDegree_top, insepDegree_bot, insepDegree_bot', insepDegree_top, isSeparable_adjoin_iff_isSeparable, isSeparable_iSup, isSeparable_sup, lift_insepDegree_bot', lift_sepDegree_bot', sepDegree_bot, sepDegree_bot', sepDegree_top, separableClosure_eq_bot_iff, isSepClosed, isClosed_restrictScalars_separableClosure, le_restrictScalars_separableClosure, le_separableClosure, le_separableClosure', le_separableClosure_iff, map_mem_separableClosure_iff, mem_separableClosure_iff, adjoin_le, comap_eq_of_algHom, eq_restrictScalars_of_isSeparable, eq_top_iff, isAlgebraic, isGalois, isSepClosure, isSeparable, le_restrictScalars, map_eq_of_algEquiv, map_eq_of_separableClosure_eq_bot, map_le_of_algHom, normalClosure_eq_self, separableClosure_eq_bot, separableClosure_le_separableClosure_iff
62
Total70

AlgEquiv

Definitions

NameCategoryTheorems
separableClosure 📖CompOp

Algebra.IsSeparable

Theorems

NameKindAssumesProvesValidatesDepends On
finInsepDegree_eq 📖mathematicalField.finInsepDegreeinsepDegree_eq
Cardinal.one_toNat
insepDegree_eq 📖mathematicalField.insepDegree
Cardinal
Cardinal.instOne
Field.insepDegree.eq_1
separableClosure.eq_top_iff
IntermediateField.rank_top
sepDegree_eq 📖mathematicalField.sepDegree
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Field.sepDegree.eq_1
separableClosure.eq_top_iff
IsScalarTower.left
IntermediateField.rank_top'

Field

Definitions

NameCategoryTheorems
finInsepDegree 📖CompOp
15 mathmath: IntermediateField.finInsepDegree_top, IsPurelyInseparable.finInsepDegree_eq, finSepDegree_mul_finInsepDegree, finInsepDegree_self, IntermediateField.finInsepDegree_le_of_left_le, finInsepDegree_eq_pow, finInsepDegree_eq_of_equiv, IntermediateField.finInsepDegree_bot', finInsepDegree_mul_finInsepDegree_of_isAlgebraic, Algebra.IsSeparable.finInsepDegree_eq, IntermediateField.finInsepDegree_bot, finInsepDegree_def', isSeparable_iff_finInsepDegree_eq_one, finInsepDegree_top_le_finInsepDegree_of_isScalarTower, instNeZeroFinInsepDegree
insepDegree 📖CompOp
20 mathmath: lift_insepDegree_mul_lift_insepDegree_of_isAlgebraic, IntermediateField.lift_insepDegree_bot', IsPurelyInseparable.insepDegree_eq, insepDegree_le_rank, insepDegree_mul_insepDegree_of_isAlgebraic, insepDegree_eq_of_equiv, instNeZeroInsepDegree, IntermediateField.insepDegree_bot', rank_mul_insepDegree_of_isPurelyInseparable, lift_rank_mul_lift_insepDegree_of_isPurelyInseparable, sepDegree_mul_insepDegree, insepDegree_self, Algebra.IsSeparable.insepDegree_eq, finInsepDegree_def', lift_insepDegree_eq_of_equiv, insepDegree_top_le_insepDegree_of_isScalarTower, IntermediateField.insepDegree_bot, IntermediateField.insepDegree_top, insepDegree_le_of_left_le, insepDegree_eq_of_isSeparable
sepDegree 📖CompOp
22 mathmath: sepDegree_self, IsPurelyInseparable.sepDegree_eq_one, rank_mul_sepDegree_of_isSeparable, Emb.cardinal_eq, sepDegree_eq_of_isPurelyInseparable, lift_sepDegree_mul_lift_sepDegree_of_isAlgebraic, IntermediateField.sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable', IntermediateField.sepDegree_bot, IntermediateField.sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable, IntermediateField.lift_sepDegree_bot', IntermediateField.sepDegree_bot', sepDegree_mul_insepDegree, instNeZeroSepDegree, sepDegree_eq_of_isPurelyInseparable_of_isSeparable, Algebra.IsSeparable.sepDegree_eq, finSepDegree_eq, lift_sepDegree_eq_of_equiv, lift_rank_mul_lift_sepDegree_of_isSeparable, sepDegree_le_rank, sepDegree_mul_sepDegree_of_isAlgebraic, sepDegree_eq_of_equiv, IntermediateField.sepDegree_top

Theorems

NameKindAssumesProvesValidatesDepends On
finInsepDegree_def' 📖mathematicalfinInsepDegree
DFunLike.coe
MonoidWithZeroHom
Cardinal
NonAssocSemiring.toMulZeroOneClass
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Cardinal.commSemiring
Nat.instMulZeroOneClass
MonoidWithZeroHom.funLike
Cardinal.toNat
insepDegree
finInsepDegree_eq_of_equiv 📖mathematicalfinInsepDegreeCardinal.toNat_lift
lift_insepDegree_eq_of_equiv
finInsepDegree_self 📖mathematicalfinInsepDegree
Algebra.id
Semifield.toCommSemiring
toSemifield
finInsepDegree_def'
insepDegree_self
Cardinal.one_toNat
finInsepDegree_top_le_finInsepDegree_of_isScalarTower 📖mathematicalfinInsepDegreeSubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
separableClosure.le_restrictScalars
IsScalarTower.of_algebraMap_eq'
Module.finrank_top_le_finrank_of_isScalarTower
commRing_strongRankCondition
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
instIsLocalRing
IntermediateField.finiteDimensional_right
IsScalarTower.right
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
insepDegree_eq_of_equiv 📖mathematicalinsepDegreeAlgebra.rank_eq_of_equiv_equiv
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
insepDegree_le_of_left_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
Cardinal
Cardinal.instLE
insepDegree
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
Algebra.id
Semifield.toCommSemiring
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
IsScalarTower.of_algebraMap_eq'
insepDegree_top_le_insepDegree_of_isScalarTower
insepDegree_le_rank 📖mathematicalCardinal
Cardinal.instLE
insepDegree
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Module.rank_top_le_rank_of_isScalarTower
IsScalarTower.left
IntermediateField.isScalarTower_mid'
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsLocalRing.toNontrivial
instIsLocalRing
IsScalarTower.right
insepDegree_self 📖mathematicalinsepDegree
Algebra.id
Semifield.toCommSemiring
toSemifield
Cardinal
Cardinal.instOne
insepDegree.eq_1
Unique.instSubsingleton
IntermediateField.rank_top
insepDegree_top_le_insepDegree_of_isScalarTower 📖mathematicalCardinal
Cardinal.instLE
insepDegree
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
separableClosure.le_restrictScalars
IsScalarTower.of_algebraMap_eq'
Module.rank_top_le_rank_of_isScalarTower
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
SubsemiringClass.nontrivial
IsLocalRing.toNontrivial
instIsLocalRing
IsScalarTower.right
instNeZeroFinInsepDegree 📖mathematicalMulZeroClass.toZero
Nat.instMulZeroClass
finInsepDegree
LT.lt.ne'
Module.finrank_pos
commRing_strongRankCondition
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsLocalRing.toNontrivial
instIsLocalRing
IntermediateField.finiteDimensional_right
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
instNeZeroInsepDegree 📖mathematicalCardinal
Cardinal.instZero
insepDegree
LT.lt.ne'
rank_pos
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsLocalRing.toNontrivial
instIsLocalRing
instNeZeroSepDegree 📖mathematicalCardinal
Cardinal.instZero
sepDegree
LT.lt.ne'
rank_pos
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsLocalRing.toNontrivial
instIsLocalRing
lift_insepDegree_eq_of_equiv 📖mathematicalCardinal.lift
insepDegree
Algebra.lift_rank_eq_of_equiv_equiv
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
lift_sepDegree_eq_of_equiv 📖mathematicalCardinal.lift
sepDegree
LinearEquiv.lift_rank_eq
IsScalarTower.left
sepDegree_eq_of_equiv 📖mathematicalsepDegreeLinearEquiv.rank_eq
IsScalarTower.left
sepDegree_le_rank 📖mathematicalCardinal
Cardinal.instLE
sepDegree
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Module.rank_bot_le_rank_of_isScalarTower
IsScalarTower.right
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.instFaithfulSMulSubtypeMem
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsLocalRing.toNontrivial
instIsLocalRing
IntermediateField.isScalarTower_mid'
sepDegree_mul_insepDegree 📖mathematicalCardinal
Cardinal.instMul
sepDegree
insepDegree
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
rank_mul_rank
IsScalarTower.left
commRing_strongRankCondition
IsLocalRing.toNontrivial
instIsLocalRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Module.Free.of_divisionRing
IntermediateField.isScalarTower_mid'
sepDegree_self 📖mathematicalsepDegree
Algebra.id
Semifield.toCommSemiring
toSemifield
Cardinal
Cardinal.instOne
sepDegree.eq_1
Unique.instSubsingleton
IsScalarTower.left
IntermediateField.rank_bot

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finset_maximalFor_isTranscendenceBasis_separableClosure 📖mathematicalMaximalFor
Set
IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IsTranscendenceBasis
Set.instMembership
EuclideanDomain.toCommRing
Field.toEuclideanDomain
restrictScalars
SetLike.instMembership
instSetLike
adjoin
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
instAlgebraSubtypeMem
isScalarTower_mid'
separableClosure
SetLike.coe
Finset
Finset.instSetLike
fg_top
isAlgebraic_adjoin_iff_top
Algebra.isAlgebraic_iff_isIntegral
Algebra.isIntegral_of_surjective
AlgEquiv.surjective
IsScalarTower.left
exists_isTranscendenceBasis_subset
IsDomain.to_noZeroDivisors
instIsDomain
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
CanLift.prf
Set.instCanLiftFinsetCoeFinite
Set.Finite.subset
Finset.finite_toSet
instWellFoundedLTNat
Function.argminOn_mem
isScalarTower_mid'
not_lt_iff_le_imp_ge
IsTranscendenceBasis.cardinalMk_eq
Cardinal.mk_fintype
Fintype.card_coe
Algebra.finite_of_essFiniteType_of_isAlgebraic
Algebra.EssFiniteType.of_comp
Subtype.range_coe_subtype
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsTranscendenceBasis.isAlgebraic_field
finiteDimensional_right
Function.not_lt_argminOn
finrank_lt_of_gt
finInsepDegree_bot 📖mathematicalField.finInsepDegree
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
Field.finInsepDegree_eq_of_equiv
Field.finInsepDegree_self
finInsepDegree_bot' 📖mathematicalField.finInsepDegree
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Cardinal.toNat_lift
lift_insepDegree_bot'
finInsepDegree_le_of_left_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Field.finInsepDegree
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsScalarTower.left
IsScalarTower.of_algebraMap_eq'
Field.finInsepDegree_top_le_finInsepDegree_of_isScalarTower
finInsepDegree_top 📖mathematicalField.finInsepDegree
IntermediateField
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.finInsepDegree_def'
insepDegree_top
insepDegree_bot 📖mathematicalField.insepDegree
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
Cardinal
Cardinal.instOne
IsScalarTower.left
Field.lift_insepDegree_eq_of_equiv
Cardinal.lift_one
Field.insepDegree_self
insepDegree_bot' 📖mathematicalField.insepDegree
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.insepDegree_eq_of_equiv
IsScalarTower.left
isScalarTower
IsScalarTower.right
insepDegree_top 📖mathematicalField.insepDegree
IntermediateField
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.insepDegree_eq_of_equiv
IsScalarTower.left
isScalarTower
isSeparable_adjoin_iff_isSeparable 📖mathematicalAlgebra.IsSeparable
IntermediateField
SetLike.instMembership
instSetLike
adjoin
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsSeparable
IsScalarTower.left
le_separableClosure_iff
adjoin_le_iff
isSeparable_iSup 📖mathematicalAlgebra.IsSeparable
IntermediateField
SetLike.instMembership
instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
IsScalarTower.left
iSup_le
isSeparable_sup 📖mathematicalAlgebra.IsSeparable
IntermediateField
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
le_separableClosure_iff
sup_le
lift_insepDegree_bot' 📖mathematicalCardinal.lift
Field.insepDegree
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.lift_insepDegree_eq_of_equiv
IsScalarTower.left
isScalarTower
IsScalarTower.right
lift_sepDegree_bot' 📖mathematicalCardinal.lift
Field.sepDegree
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.lift_sepDegree_eq_of_equiv
IsScalarTower.left
isScalarTower
IsScalarTower.right
sepDegree_bot 📖mathematicalField.sepDegree
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
Cardinal
Cardinal.instOne
IsScalarTower.left
Field.lift_sepDegree_eq_of_equiv
Cardinal.lift_one
Field.sepDegree_self
sepDegree_bot' 📖mathematicalField.sepDegree
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.sepDegree_eq_of_equiv
IsScalarTower.left
isScalarTower
IsScalarTower.right
sepDegree_top 📖mathematicalField.sepDegree
IntermediateField
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.sepDegree_eq_of_equiv
IsScalarTower.left
isScalarTower

IntermediateField.FG

Theorems

NameKindAssumesProvesValidatesDepends On
exists_finset_maximalFor_isTranscendenceBasis_separableClosure 📖mathematicalMaximalFor
Set
IntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
IsTranscendenceBasis
Set.instMembership
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.restrictScalars
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
separableClosure
SetLike.coe
Finset
Finset.instSetLike
IntermediateField.exists_finset_maximalFor_isTranscendenceBasis_separableClosure

IsSepClosed

Theorems

NameKindAssumesProvesValidatesDepends On
separableClosure_eq_bot_iff 📖mathematicalseparableClosure
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IsSepClosed
of_exists_root
exists_aeval_eq_zero
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
LT.lt.ne'
Polynomial.degree_pos_of_irreducible
mem_separableClosure_iff
Polynomial.Separable.of_dvd
minpoly.dvd
IsScalarTower.left
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IntermediateField.eq_bot_of_isSepClosed_of_isSeparable
separableClosure.isSeparable

SeparableClosure

Theorems

NameKindAssumesProvesValidatesDepends On
isSepClosed 📖mathematicalIsSepClosed
SeparableClosure
IntermediateField.toField
AlgebraicClosure
AlgebraicClosure.instField
AlgebraicClosure.instAlgebra
Semifield.toCommSemiring
Field.toSemifield
Algebra.id
separableClosure
IsSepClosure.sep_closed
AlgebraicClosure.instIsScalarTower
IsScalarTower.right
separableClosure.isSepClosure
IsSepClosed.of_isAlgClosed
AlgebraicClosure.isAlgClosed

(root)

Definitions

NameCategoryTheorems
SeparableClosure 📖CompOp
3 mathmath: SeparableClosure.isSepClosed, SeparableClosure.hasEnoughRootsOfUnity_pow, SeparableClosure.hasEnoughRootsOfUnity
separableClosure 📖CompOp
38 mathmath: SeparableClosure.isSepClosed, IntermediateField.exists_finset_maximalFor_isTranscendenceBasis_separableClosure, map_mem_separableClosure_iff, SeparableClosure.hasEnoughRootsOfUnity_pow, le_separableClosure_iff, separableClosure_le, eq_separableClosure_iff, separableClosure.map_le_of_algHom, separableClosure.eq_top_iff, SeparableClosure.hasEnoughRootsOfUnity, separableClosure_inf_perfectClosure, le_restrictScalars_separableClosure, separableClosure.adjoin_eq_of_isAlgebraic, eq_separableClosure, separableClosure.isAlgebraic, separableClosure.isSepClosure, separableClosure.isSeparable, separableClosure.eq_restrictScalars_of_isSeparable, IsSepClosed.separableClosure_eq_bot_iff, separableClosure.comap_eq_of_algHom, mem_separableClosure_iff, le_separableClosure', separableClosure_le_iff, isClosed_restrictScalars_separableClosure, separableClosure_le_separableClosure_iff, separableClosure.separableClosure_eq_bot, le_separableClosure, separableClosure.map_eq_of_algEquiv, IntermediateField.FG.exists_finset_maximalFor_isTranscendenceBasis_separableClosure, separableClosure.isGalois, separableClosure.eq_bot_iff, separableClosure.adjoin_eq_of_isAlgebraic_of_isSeparable, separableClosure.normalClosure_eq_self, Field.Emb.cardinal_separableClosure, separableClosure.adjoin_le, separableClosure.le_restrictScalars, separableClosure.isPurelyInseparable, separableClosure.eq_bot_of_isPurelyInseparable
separableClosureOperator 📖CompOp
1 mathmath: isClosed_restrictScalars_separableClosure

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed_restrictScalars_separableClosure 📖mathematicalClosureOperator.IsClosed
IntermediateField
PartialOrder.toPreorder
IntermediateField.instPartialOrder
separableClosureOperator
IntermediateField.restrictScalars
separableClosure
ClosureOperator.isClosed_iff_closure_le
Eq.le
separableClosure.separableClosure_eq_bot
le_restrictScalars_separableClosure 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
IntermediateField.restrictScalars
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
separableClosure
isSeparable_algebraMap
le_separableClosure 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
separableClosure
IsScalarTower.left
le_separableClosure'
Algebra.IsSeparable.isSeparable
le_separableClosure' 📖mathematicalIsSeparable
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
separableClosure
IsScalarTower.left
IntermediateField.minpoly_eq
le_separableClosure_iff 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
separableClosure
Algebra.IsSeparable
SetLike.instMembership
IntermediateField.instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Subalgebra.isSeparable_iff
map_mem_separableClosure_iff 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
separableClosure
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
minpoly.algHom_eq
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
mem_separableClosure_iff 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
separableClosure
IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
separableClosure_le_separableClosure_iff 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
IntermediateField.restrictScalars
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
separableClosure
ClosureOperator.IsClosed.closure_le_iff
isClosed_restrictScalars_separableClosure

separableClosure

Definitions

NameCategoryTheorems
algEquivOfAlgEquiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
IntermediateField.adjoin
SetLike.coe
IntermediateField.instSetLike
separableClosure
IntermediateField.adjoin_le_iff
le_restrictScalars
comap_eq_of_algHom 📖mathematicalIntermediateField.comap
separableClosure
IntermediateField.ext
map_mem_separableClosure_iff
eq_restrictScalars_of_isSeparable 📖mathematicalseparableClosure
IntermediateField.restrictScalars
LE.le.antisymm
le_restrictScalars
IsSeparable.of_algebra_isSeparable_of_isSeparable
eq_top_iff 📖mathematicalseparableClosure
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Algebra.IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
mem_separableClosure_iff
IntermediateField.mem_top
top_unique
Algebra.IsSeparable.isSeparable
isAlgebraic 📖mathematicalAlgebra.IsAlgebraic
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
separableClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
IntermediateField.isAlgebraic_iff
IsIntegral.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsSeparable.isIntegral
isGalois 📖mathematicalIsGalois
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
separableClosure
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
isSeparable
normalClosure_eq_self
normalClosure.normal
isSepClosure 📖mathematicalIsSepClosure
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
separableClosure
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
IsSepClosed.separableClosure_eq_bot_iff
separableClosure_eq_bot
isSeparable
isSeparable 📖mathematicalAlgebra.IsSeparable
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
separableClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
IntermediateField.minpoly_eq
le_restrictScalars 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
separableClosure
IntermediateField.restrictScalars
IsSeparable.tower_top
map_eq_of_algEquiv 📖mathematicalIntermediateField.map
AlgHomClass.toAlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
separableClosure
LE.le.antisymm
map_le_of_algHom
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
map_mem_separableClosure_iff
AlgEquiv.apply_symm_apply
map_eq_of_separableClosure_eq_bot 📖mathematicalseparableClosure
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IntermediateField.map
IsScalarTower.toAlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
le_antisymm
map_le_of_algHom
IntermediateField.mem_bot
mem_separableClosure_iff
IsSeparable.tower_top
map_mem_separableClosure_iff
map_le_of_algHom 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
IntermediateField.map
separableClosure
IntermediateField.map_le_iff_le_comap
Eq.ge
comap_eq_of_algHom
normalClosure_eq_self 📖mathematicalIntermediateField.normalClosure
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
separableClosure
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
le_antisymm
IsScalarTower.left
normalClosure_le_iff
AlgEquiv.Algebra.isSeparable
IsLocalRing.toNontrivial
Field.instIsLocalRing
isSeparable
le_separableClosure
IntermediateField.le_normalClosure
separableClosure_eq_bot 📖mathematicalseparableClosure
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
bot_unique
IntermediateField.mem_bot
IsSeparable.of_algebra_isSeparable_of_isSeparable
IsScalarTower.left
IntermediateField.isScalarTower_mid'
isSeparable
mem_separableClosure_iff

---

← Back to Index