Documentation Verification Report

SeparableDegree

πŸ“ Source: Mathlib/FieldTheory/SeparableDegree.lean

Statistics

MetricCount
DefinitionsEmb, embEquivOfAdjoinSplits, embEquivOfEquiv, embEquivOfIsAlgClosed, embProdEmbOfIsAlgebraic, finSepDegree, instInhabitedEmb, natSepDegree
8
Theoremstrans, finSepDegree_eq, finSepDegree_dvd_finrank, finSepDegree_eq_finrank_iff, finSepDegree_eq_finrank_of_isSeparable, finSepDegree_eq_of_adjoin_splits, finSepDegree_eq_of_equiv, finSepDegree_eq_of_isAlgClosed, finSepDegree_eq_zero_of_transcendental, finSepDegree_le_finrank, finSepDegree_mul_finSepDegree_of_isAlgebraic, finSepDegree_self, infinite_emb_of_transcendental, instNeZeroFinSepDegree, isSeparable_add, isSeparable_algebraMap, isSeparable_inv, isSeparable_mul, isSeparable_neg, isSeparable_sub, finSepDegree_adjoin_simple_eq_finrank_iff, finSepDegree_adjoin_simple_eq_natSepDegree, finSepDegree_adjoin_simple_le_finrank, finSepDegree_bot, finSepDegree_bot', finSepDegree_top, isSeparable_adjoin_pair_of_isSeparable, isSeparable_adjoin_simple_iff_isSeparable, isSeparable_of_mem_isSeparable, natSepDegree_dvd_natDegree, natSepDegree_eq_one_iff_of_monic, natSepDegree_eq_one_iff_of_monic', of_algebra_isSeparable_of_isSeparable, splits_of_natSepDegree_eq_one, natSepDegree_eq, natSepDegree_eq, eq_X_pow_char_pow_sub_C_of_natSepDegree_eq_one_of_irreducible, eq_X_pow_char_pow_sub_C_pow_of_natSepDegree_eq_one, eq_X_sub_C_pow_of_natSepDegree_eq_one_of_splits, natSepDegree_eq_one_iff, natSepDegree_eq_one_iff_of_irreducible, natSepDegree_eq_one_iff_of_irreducible', natSepDegree_eq_natDegree, natSepDegree_C, natSepDegree_C_mul, natSepDegree_C_mul_X_sub_C_pow, natSepDegree_X, natSepDegree_X_pow, natSepDegree_X_pow_char_pow_sub_C, natSepDegree_X_sub_C, natSepDegree_X_sub_C_pow, natSepDegree_eq_natDegree_iff, natSepDegree_eq_natDegree_of_separable, natSepDegree_eq_of_isAlgClosed, natSepDegree_eq_of_splits, natSepDegree_eq_zero, natSepDegree_eq_zero_iff, natSepDegree_expand, natSepDegree_le_natDegree, natSepDegree_le_of_dvd, natSepDegree_map, natSepDegree_mul, natSepDegree_mul_eq_iff, natSepDegree_mul_of_isCoprime, natSepDegree_ne_zero, natSepDegree_ne_zero_iff, natSepDegree_one, natSepDegree_pow, natSepDegree_pow_of_ne_zero, natSepDegree_smul_nonzero, natSepDegree_zero, natSepDegree_eq_one_iff_eq_X_pow_sub_C, natSepDegree_eq_one_iff_eq_X_sub_C_pow, natSepDegree_eq_one_iff_eq_expand_X_sub_C, natSepDegree_eq_one_iff_pow_mem, perfectField_iff_splits_of_natSepDegree_eq_one
76
Total84

Algebra.IsSeparable

Theorems

NameKindAssumesProvesValidatesDepends On
trans πŸ“–mathematicalβ€”Algebra.IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”IsSeparable.of_algebra_isSeparable_of_isSeparable
isSeparable

Field

Definitions

NameCategoryTheorems
Emb πŸ“–CompOp
9 mathmath: Emb.Cardinal.two_le_deg, Emb.Cardinal.succEquiv_coherence, Emb.cardinal_eq, Emb.cardinal_eq_of_isSeparable, Emb.Cardinal.deg_lt_aleph0, Emb.cardinal_eq_two_pow_sepDegree, infinite_emb_of_transcendental, Emb.cardinal_eq_two_pow_rank, Emb.cardinal_separableClosure
embEquivOfAdjoinSplits πŸ“–CompOpβ€”
embEquivOfEquiv πŸ“–CompOpβ€”
embEquivOfIsAlgClosed πŸ“–CompOpβ€”
embProdEmbOfIsAlgebraic πŸ“–CompOpβ€”
finSepDegree πŸ“–CompOp
22 mathmath: finSepDegree_eq_of_isAlgClosed, finSepDegree_mul_finInsepDegree, finSepDegree_eq_of_equiv, finSepDegree_self, IntermediateField.finSepDegree_adjoin_simple_eq_finrank_iff, finSepDegree_le_finrank, finSepDegree_eq_finrank_of_isSeparable, IntermediateField.finSepDegree_adjoin_simple_eq_natSepDegree, IntermediateField.finSepDegree_adjoin_simple_le_finrank, finSepDegree_mul_finSepDegree_of_isAlgebraic, Algebra.IsSeparable.finSepDegree_eq, instNeZeroFinSepDegree, isPurelyInseparable_iff_finSepDegree_eq_one, finSepDegree_dvd_finrank, finSepDegree_eq, finSepDegree_eq_zero_of_transcendental, IntermediateField.finSepDegree_bot', finSepDegree_eq_finrank_iff, IntermediateField.finSepDegree_top, finSepDegree_eq_of_adjoin_splits, IsPurelyInseparable.finSepDegree_eq_one, IntermediateField.finSepDegree_bot
instInhabitedEmb πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
finSepDegree_dvd_finrank πŸ“–mathematicalβ€”finSepDegree
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”IsScalarTower.left
IntermediateField.finSepDegree_top
finrank_top
IntermediateField.induction_on_adjoin
IntermediateField.finSepDegree_bot
IntermediateField.finrank_bot
IntermediateField.isScalarTower_mid'
mul_dvd_mul
Module.finrank_mul_finrank
IntermediateField.instIsScalarTowerSubtypeMem_1
IsScalarTower.right
commRing_strongRankCondition
IsLocalRing.toNontrivial
instIsLocalRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Module.Free.of_divisionRing
finSepDegree_mul_finSepDegree_of_isAlgebraic
IntermediateField.isAlgebraic_tower_bot
IntermediateField.isAlgebraic_tower_top
Algebra.IsAlgebraic.of_finite
Module.finrank_of_infinite_dimensional
dvd_zero
finSepDegree_eq_finrank_iff πŸ“–mathematicalβ€”finSepDegree
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Algebra.IsSeparable
DivisionRing.toRing
toDivisionRing
β€”IsAlgebraic.of_finite
IsLocalRing.toNontrivial
instIsLocalRing
IsScalarTower.left
IntermediateField.finSepDegree_adjoin_simple_eq_finrank_iff
le_antisymm
IntermediateField.finSepDegree_adjoin_simple_le_finrank
le_of_not_gt
finSepDegree_le_finrank
IntermediateField.finiteDimensional_right
instNeZeroFinSepDegree
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
neg_eq_zero
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Module.finrank_mul_finrank
IntermediateField.isScalarTower_mid'
commRing_strongRankCondition
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Module.Free.of_divisionRing
finSepDegree_mul_finSepDegree_of_isAlgebraic
IntermediateField.isAlgebraic_tower_top
Algebra.IsAlgebraic.of_finite
finSepDegree_eq_finrank_of_isSeparable
finSepDegree_eq_finrank_of_isSeparable πŸ“–mathematicalβ€”finSepDegree
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”IsScalarTower.left
IntermediateField.finSepDegree_top
finrank_top
IntermediateField.induction_on_adjoin
IntermediateField.finSepDegree_bot
IntermediateField.finrank_bot
IntermediateField.isScalarTower_mid'
IntermediateField.finSepDegree_adjoin_simple_eq_finrank_iff
IsAlgebraic.of_finite
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsLocalRing.toNontrivial
instIsLocalRing
IntermediateField.finiteDimensional_right
IsSeparable.tower_top
Algebra.IsSeparable.isSeparable
Module.finrank_mul_finrank
IntermediateField.instIsScalarTowerSubtypeMem_1
IsScalarTower.right
commRing_strongRankCondition
Module.Free.of_divisionRing
finSepDegree_mul_finSepDegree_of_isAlgebraic
IntermediateField.isAlgebraic_tower_bot
IntermediateField.isAlgebraic_tower_top
Algebra.IsSeparable.isAlgebraic
Module.finrank_of_infinite_dimensional
IntermediateField.exists_lt_finrank_of_infinite_dimensional
IntermediateField.isSeparable_tower_bot
MulZeroClass.mul_zero
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Mathlib.Tactic.Linarith.natCast_nonneg
Nat.cast_zero
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
sub_eq_zero_of_eq
Nat.cast_mul
finSepDegree_eq_of_adjoin_splits πŸ“–mathematicalIntermediateField.adjoin
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IsIntegral
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
finSepDegree
Nat.card
AlgHom
β€”Nat.card_congr
finSepDegree_eq_of_equiv πŸ“–mathematicalβ€”finSepDegreeβ€”Nat.card_congr
finSepDegree_eq_of_isAlgClosed πŸ“–mathematicalβ€”finSepDegree
Nat.card
AlgHom
Semifield.toCommSemiring
toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”Nat.card_congr
finSepDegree_eq_zero_of_transcendental πŸ“–mathematicalβ€”finSepDegreeβ€”Nat.card_eq_zero_of_infinite
infinite_emb_of_transcendental
finSepDegree_le_finrank πŸ“–mathematicalβ€”finSepDegree
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”Module.finrank_pos
commRing_strongRankCondition
IsLocalRing.toNontrivial
instIsLocalRing
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
finSepDegree_dvd_finrank
finSepDegree_mul_finSepDegree_of_isAlgebraic πŸ“–mathematicalβ€”finSepDegreeβ€”Nat.card_prod
Nat.card_congr
finSepDegree_self πŸ“–mathematicalβ€”finSepDegree
Algebra.id
Semifield.toCommSemiring
toSemifield
β€”finSepDegree.eq_1
Nat.card_eq_one_iff_unique
AlgHom.subsingleton
Unique.instSubsingleton
infinite_emb_of_transcendental πŸ“–mathematicalβ€”Infinite
Emb
β€”exists_isTranscendenceBasis'
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
instIsLocalRing
IsTranscendenceBasis.isAlgebraic_field
IsScalarTower.left
Equiv.infinite_iff
IntermediateField.isScalarTower_mid'
Prod.infinite_of_left
MvPolynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
instIsDomain
IsTranscendenceBasis.nonempty_iff_transcendental
AlgebraicClosure.instIsScalarTower
OreLocalization.instIsScalarTower
IsScalarTower.right
IsScalarTower.coe_toAlgHom'
IsScalarTower.algebraMap_eq
RingHom.injective
DivisionRing.isSimpleRing
MvPolynomial.nontrivial_of_nontrivial
MvPolynomial.instNoZeroDivisors
IsDomain.to_noZeroDivisors
IsFractionRing.injective
Localization.isLocalization
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.aeval_X
MvPolynomial.algebraicIndependent_polynomial_aeval_X
Transcendental.pow
Polynomial.transcendental_X
Infinite.of_injective
instInfiniteNat
IsFractionRing.lift_algebraMap
MvPolynomial.bind₁_X_right
MvPolynomial.totalDegree_X_pow
instNeZeroFinSepDegree πŸ“–mathematicalβ€”MulZeroClass.toZero
Nat.instMulZeroClass
finSepDegree
β€”Nat.card_ne_zero
Fintype.finite
instIsDomain
isSeparable_add πŸ“–mathematicalIsSeparable
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”IntermediateField.isSeparable_of_mem_isSeparable
IntermediateField.isSeparable_adjoin_pair_of_isSeparable
IntermediateField.add_mem
IntermediateField.subset_adjoin
isSeparable_algebraMap πŸ“–mathematicalβ€”IsSeparable
EuclideanDomain.toCommRing
toEuclideanDomain
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
toSemifield
Ring.toSemiring
RingHom.instFunLike
algebraMap
β€”isSeparable_algebraMap
isSeparable_inv πŸ“–mathematicalIsSeparable
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
toSemifield
β€”IntermediateField.isSeparable_of_mem_isSeparable
IsScalarTower.left
IntermediateField.isSeparable_adjoin_simple_iff_isSeparable
IntermediateField.inv_mem
IntermediateField.mem_adjoin_simple_self
isSeparable_mul πŸ“–mathematicalIsSeparable
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”IntermediateField.isSeparable_of_mem_isSeparable
IntermediateField.isSeparable_adjoin_pair_of_isSeparable
IntermediateField.mul_mem
IntermediateField.subset_adjoin
isSeparable_neg πŸ“–mathematicalIsSeparable
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”IntermediateField.isSeparable_of_mem_isSeparable
IsScalarTower.left
IntermediateField.isSeparable_adjoin_simple_iff_isSeparable
IntermediateField.neg_mem
IntermediateField.mem_adjoin_simple_self
isSeparable_sub πŸ“–mathematicalIsSeparable
EuclideanDomain.toCommRing
toEuclideanDomain
DivisionRing.toRing
toDivisionRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
β€”IntermediateField.isSeparable_of_mem_isSeparable
IntermediateField.isSeparable_adjoin_pair_of_isSeparable
IntermediateField.sub_mem
IntermediateField.subset_adjoin

Field.Algebra.IsSeparable

Theorems

NameKindAssumesProvesValidatesDepends On
finSepDegree_eq πŸ“–mathematicalβ€”Field.finSepDegree
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”Field.finSepDegree_eq_finrank_of_isSeparable

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
finSepDegree_adjoin_simple_eq_finrank_iff πŸ“–mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Field.finSepDegree
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Module.finrank
module'
IsSeparable
β€”IsScalarTower.left
finSepDegree_adjoin_simple_eq_natSepDegree
adjoin.finrank
IsAlgebraic.isIntegral
Polynomial.natSepDegree_eq_natDegree_iff
minpoly.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsSeparable.eq_1
finSepDegree_adjoin_simple_eq_natSepDegree πŸ“–mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Field.finSepDegree
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Polynomial.natSepDegree
minpoly
β€”IsScalarTower.left
instIsDomain
Nat.card_congr
IsAlgebraic.isIntegral
Nat.card_eq_fintype_card
Polynomial.natSepDegree_eq_of_isAlgClosed
AlgebraicClosure.isAlgClosed
Fintype.card_coe
Fintype.card_congr'
finSepDegree_adjoin_simple_le_finrank πŸ“–mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Field.finSepDegree
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Module.finrank
module'
β€”IsScalarTower.left
Module.finrank_pos
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
adjoin.finiteDimensional
IsAlgebraic.isIntegral
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
finSepDegree_bot πŸ“–mathematicalβ€”Field.finSepDegree
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
Field.finSepDegree_eq_of_equiv
Field.finSepDegree_self
finSepDegree_bot' πŸ“–mathematicalβ€”Field.finSepDegree
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”Field.finSepDegree_eq_of_equiv
IsScalarTower.left
isScalarTower
IsScalarTower.right
finSepDegree_top πŸ“–mathematicalβ€”Field.finSepDegree
IntermediateField
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”Field.finSepDegree_eq_of_equiv
IsScalarTower.left
isScalarTower
isSeparable_adjoin_pair_of_isSeparable πŸ“–mathematicalIsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Algebra.IsSeparable
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instInsert
Set.instSingletonSet
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
isScalarTower_mid'
adjoin_simple_adjoin_simple
IsSeparable.tower_top
Algebra.IsSeparable.trans
instIsScalarTowerSubtypeMem_1
IsScalarTower.right
isSeparable_adjoin_simple_iff_isSeparable
isSeparable_adjoin_simple_iff_isSeparable πŸ“–mathematicalβ€”Algebra.IsSeparable
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsSeparable
β€”IsScalarTower.left
isSeparable_of_mem_isSeparable
mem_adjoin_simple_self
IsSeparable.isIntegral
Field.finSepDegree_eq_finrank_iff
adjoin.finiteDimensional
finSepDegree_adjoin_simple_eq_finrank_iff
IsIntegral.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
isSeparable_of_mem_isSeparable πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”IsScalarTower.left
minpoly_eq
Algebra.IsSeparable.isSeparable

Irreducible

Theorems

NameKindAssumesProvesValidatesDepends On
natSepDegree_dvd_natDegree πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.natSepDegree
Polynomial.natDegree
β€”ExpChar.exists
instIsDomain
hasSeparableContraction
Polynomial.HasSeparableContraction.natSepDegree_eq
Polynomial.HasSeparableContraction.dvd_degree
natSepDegree_eq_one_iff_of_monic πŸ“–mathematicalPolynomial.Monic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.natSepDegree
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
Nat.instMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”natSepDegree_eq_one_iff_of_monic'
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.expand_X
Polynomial.expand_C
natSepDegree_eq_one_iff_of_monic' πŸ“–mathematicalPolynomial.Monic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.natSepDegree
DFunLike.coe
AlgHom
CommSemiring.toSemiring
Semifield.toCommSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.expand
Monoid.toNatPow
Nat.instMonoid
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.X
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”hasSeparableContraction
Polynomial.Separable.natSepDegree_eq_natDegree
Polynomial.natSepDegree_expand
Polynomial.Monic.eq_X_add_C
Polynomial.monic_expand_iff
expChar_pow_pos
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
sub_neg_eq_add
Polynomial.natSepDegree_X_sub_C

IsSeparable

Theorems

NameKindAssumesProvesValidatesDepends On
of_algebra_isSeparable_of_isSeparable πŸ“–β€”IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”β€”IntermediateField.subset_adjoin
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Polynomial.map_toSubring
IsScalarTower.left
IntermediateField.isScalarTower_mid
IntermediateField.mem_adjoin_simple_self
Polynomial.aeval_map_algebraMap
IntermediateField.isScalarTower_bot
minpoly.aeval
IsIntegral.tower_top
isIntegral_trans
Algebra.IsAlgebraic.isIntegral
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
isIntegral
Polynomial.Separable.of_dvd
minpoly.dvd
Field.finSepDegree_mul_finSepDegree_of_isAlgebraic
IntermediateField.instIsScalarTowerSubtypeMem_1
SubsemiringClass.nontrivial
IntermediateField.isSeparable_adjoin_simple_iff_isSeparable
IntermediateField.isSeparable_of_mem_isSeparable
Field.finSepDegree_eq_finrank_iff
FiniteDimensional.trans
IntermediateField.finiteDimensional_adjoin
Finite.of_fintype
Algebra.IsSeparable.isIntegral
IntermediateField.adjoin.finiteDimensional
Module.finrank_mul_finrank
commRing_strongRankCondition
Module.Free.of_divisionRing
Field.finSepDegree_eq_finrank_of_isSeparable
Algebra.isSeparable_tower_bot_of_isSeparable
IntermediateField.isScalarTower_mid'

PerfectField

Theorems

NameKindAssumesProvesValidatesDepends On
splits_of_natSepDegree_eq_one πŸ“–mathematicalPolynomial.natSepDegreePolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
β€”perfectField_iff_splits_of_natSepDegree_eq_one
Polynomial.natSepDegree_map

Polynomial

Definitions

NameCategoryTheorems
natSepDegree πŸ“–CompOp
44 mathmath: natSepDegree_le_natDegree, mem_perfectClosure_iff_natSepDegree_eq_one, natSepDegree_pow, Irreducible.natSepDegree_eq_one_iff_of_monic', Monic.natSepDegree_eq_one_iff_of_irreducible', natSepDegree_X_sub_C_pow, minpoly.natSepDegree_eq_one_iff_eq_X_pow_sub_C, Separable.natSepDegree_eq_natDegree, natSepDegree_eq_zero_iff, natSepDegree_eq_zero, natSepDegree_zero, IsPurelyInseparable.natSepDegree_eq_one, minpoly.natSepDegree_eq_one_iff_eq_X_sub_C_pow, natSepDegree_eq_natDegree_of_separable, natSepDegree_C_mul_X_sub_C_pow, natSepDegree_X, natSepDegree_map, HasSeparableContraction.natSepDegree_eq, natSepDegree_eq_natDegree_iff, natSepDegree_X_pow_char_pow_sub_C, isPurelyInseparable_iff_natSepDegree_eq_one, Irreducible.natSepDegree_eq_one_iff_of_monic, IntermediateField.finSepDegree_adjoin_simple_eq_natSepDegree, Monic.natSepDegree_eq_one_iff, natSepDegree_C_mul, natSepDegree_mul_eq_iff, natSepDegree_smul_nonzero, natSepDegree_expand, natSepDegree_pow_of_ne_zero, natSepDegree_one, IsSeparableContraction.natSepDegree_eq, natSepDegree_C, Irreducible.natSepDegree_dvd_natDegree, minpoly.natSepDegree_eq_one_iff_pow_mem, natSepDegree_X_sub_C, natSepDegree_eq_of_isAlgClosed, natSepDegree_mul_of_isCoprime, minpoly.natSepDegree_eq_one_iff_eq_expand_X_sub_C, natSepDegree_mul, natSepDegree_eq_of_splits, Monic.natSepDegree_eq_one_iff_of_irreducible, natSepDegree_X_pow, IntermediateField.isPurelyInseparable_adjoin_simple_iff_natSepDegree_eq_one, natSepDegree_le_of_dvd

Theorems

NameKindAssumesProvesValidatesDepends On
natSepDegree_C πŸ“–mathematicalβ€”natSepDegree
DFunLike.coe
RingHom
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”natSepDegree_eq_zero
natDegree_C
natSepDegree_C_mul πŸ“–mathematicalβ€”natSepDegree
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”instIsDomain
natSepDegree_eq_of_isAlgClosed
AlgebraicClosure.isAlgClosed
aroots_C_mul
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
natSepDegree_C_mul_X_sub_C_pow πŸ“–mathematicalβ€”natSepDegree
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSub
DivisionRing.toRing
Field.toDivisionRing
X
β€”natSepDegree_C_mul
natSepDegree_X_sub_C_pow
natSepDegree_X πŸ“–mathematicalβ€”natSepDegree
X
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”aroots_X
Multiset.toFinset_singleton
Finset.card_singleton
natSepDegree_X_pow πŸ“–mathematicalβ€”natSepDegree
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
β€”natSepDegree_pow
natSepDegree_X
natSepDegree_X_pow_char_pow_sub_C πŸ“–mathematicalβ€”natSepDegree
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
X
Nat.instMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”expand_X
expand_C
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
natSepDegree_expand
natSepDegree_X_sub_C
natSepDegree_X_sub_C πŸ“–mathematicalβ€”natSepDegree
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instSub
DivisionRing.toRing
Field.toDivisionRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
β€”aroots_X_sub_C
Multiset.toFinset_singleton
Finset.card_singleton
natSepDegree_X_sub_C_pow πŸ“–mathematicalβ€”natSepDegree
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
instSub
DivisionRing.toRing
Field.toDivisionRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
β€”natSepDegree_pow
natSepDegree_X_sub_C
natSepDegree_eq_natDegree_iff πŸ“–mathematicalβ€”natSepDegree
natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Separable
Semifield.toCommSemiring
β€”instIsDomain
card_rootSet_eq_natDegree_iff_of_splits
SplittingField.splits
Fintype.card_congr'
rootSet_def
Fintype.card_coe
natSepDegree_eq_natDegree_of_separable πŸ“–mathematicalSeparable
Semifield.toCommSemiring
Field.toSemifield
natSepDegree
natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”natSepDegree_eq_natDegree_iff
Separable.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
natSepDegree_eq_of_isAlgClosed πŸ“–mathematicalβ€”natSepDegree
Finset.card
Multiset.toFinset
aroots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
β€”natSepDegree_eq_of_splits
IsAlgClosed.splits
natSepDegree_eq_of_splits πŸ“–mathematicalSplits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
natSepDegree
Finset.card
Multiset.toFinset
aroots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
β€”instIsDomain
aroots.eq_1
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
map_map
Splits.roots_map
DivisionRing.isSimpleRing
SplittingField.splits
Multiset.toFinset_map
Finset.card_image_of_injective
RingHom.injective
IsLocalRing.toNontrivial
Field.instIsLocalRing
natSepDegree.eq_1
natSepDegree_eq_zero πŸ“–mathematicalnatDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
natSepDegreeβ€”Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Mathlib.Tactic.Linarith.natCast_nonneg
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
natSepDegree_le_natDegree
sub_eq_zero_of_eq
natSepDegree_eq_zero_iff πŸ“–mathematicalβ€”natSepDegree
natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Function.mtr
natSepDegree_ne_zero
natSepDegree_eq_zero
natSepDegree_expand πŸ“–mathematicalβ€”natSepDegree
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
semiring
algebraOfAlgebra
Algebra.id
AlgHom.funLike
expand
Monoid.toNatPow
Nat.instMonoid
β€”one_pow
expand_one
instIsDomain
natSepDegree_eq_of_isAlgClosed
AlgebraicClosure.isAlgClosed
roots.congr_simp
map_expand
Fintype.card_coe
Fintype.card_eq
expChar_prime
AlgebraicClosure.instCharP
PerfectField.toPerfectRing
IsAlgClosed.perfectField
natSepDegree_le_natDegree πŸ“–mathematicalβ€”natSepDegree
natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”instIsDomain
card_roots'
LE.le.trans
Multiset.toFinset_card_le
natDegree_map
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
aroots_def
natSepDegree_le_of_dvd πŸ“–mathematicalPolynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
natSepDegreeβ€”instIsDomain
natSepDegree_eq_of_isAlgClosed
AlgebraicClosure.isAlgClosed
Finset.card_le_card
Multiset.toFinset_subset
Multiset.Le.subset
roots.le_of_dvd
map_ne_zero
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_dvd
natSepDegree_map πŸ“–mathematicalβ€”natSepDegree
map
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”instIsDomain
natSepDegree_eq_of_isAlgClosed
AlgebraicClosure.isAlgClosed
roots.congr_simp
map_map
AlgebraicClosure.instIsScalarTower
IsScalarTower.right
natSepDegree_mul πŸ“–mathematicalβ€”natSepDegree
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instMul
β€”natSepDegree_zero
Nat.instCanonicallyOrderedAdd
instIsDomain
natSepDegree_eq_of_isAlgClosed
AlgebraicClosure.isAlgClosed
aroots_mul
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Multiset.toFinset_add
Finset.card_union_le
natSepDegree_mul_eq_iff πŸ“–mathematicalβ€”natSepDegree
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instMul
instZero
IsCoprime
commSemiring
Semifield.toCommSemiring
β€”MulZeroClass.zero_mul
natSepDegree_zero
zero_add
isCoprime_zero_left
isUnit_iff
IsDomain.to_noZeroDivisors
instIsDomain
natSepDegree_eq_zero_iff
natDegree_eq_zero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Ne.isUnit
mul_eq_zero
instNoZeroDivisors
mul_comm
add_comm
natSepDegree_eq_of_isAlgClosed
AlgebraicClosure.isAlgClosed
aroots_mul
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Multiset.toFinset_add
isCoprime_of_irreducible_dvd
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
IsAlgClosed.exists_aeval_eq_zero
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
LT.lt.ne'
degree_pos_of_irreducible
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
MulZeroClass.mul_zero
add_zero
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
AlgHomClass.toRingHomClass
NeZero.one
natSepDegree_mul_of_isCoprime πŸ“–mathematicalIsCoprime
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
commSemiring
Semifield.toCommSemiring
natSepDegree
instMul
β€”natSepDegree_mul_eq_iff
natSepDegree_ne_zero πŸ“–β€”β€”β€”β€”natSepDegree.eq_1
Finset.card_eq_zero
Finset.nonempty_iff_ne_empty
SplittingField.splits
degree_ne_of_natDegree_ne
natDegree_map
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Multiset.mem_toFinset
mem_aroots
instIsDomain
IsSplittingField.instIsTorsionFreeSplittingField
eval_rootOfSplits
natSepDegree_ne_zero_iff πŸ“–β€”β€”β€”β€”Iff.not
natSepDegree_eq_zero_iff
natSepDegree_one πŸ“–mathematicalβ€”natSepDegree
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instOne
β€”C_1
natSepDegree_C
natSepDegree_pow πŸ“–mathematicalβ€”natSepDegree
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”instIsDomain
natSepDegree_eq_of_isAlgClosed
AlgebraicClosure.isAlgClosed
aroots_pow
zero_smul
Multiset.toFinset_nsmul
natSepDegree_pow_of_ne_zero πŸ“–mathematicalβ€”natSepDegree
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
β€”natSepDegree_pow
natSepDegree_smul_nonzero πŸ“–mathematicalβ€”natSepDegree
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.toSMul
Semifield.toCommSemiring
semiring
algebraOfAlgebra
Algebra.id
β€”instIsDomain
natSepDegree_eq_of_isAlgClosed
AlgebraicClosure.isAlgClosed
aroots_smul_nonzero
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
natSepDegree_zero πŸ“–mathematicalβ€”natSepDegree
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instZero
β€”C_0
natSepDegree_C

Polynomial.HasSeparableContraction

Theorems

NameKindAssumesProvesValidatesDepends On
natSepDegree_eq πŸ“–mathematicalPolynomial.HasSeparableContraction
Semifield.toCommSemiring
Field.toSemifield
Polynomial.natSepDegree
degree
β€”Polynomial.IsSeparableContraction.natSepDegree_eq
isSeparableContraction

Polynomial.IsSeparableContraction

Theorems

NameKindAssumesProvesValidatesDepends On
natSepDegree_eq πŸ“–mathematicalPolynomial.IsSeparableContraction
Semifield.toCommSemiring
Field.toSemifield
Polynomial.natSepDegree
Polynomial.natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”Polynomial.natSepDegree_expand
Polynomial.Separable.natSepDegree_eq_natDegree

Polynomial.Monic

Theorems

NameKindAssumesProvesValidatesDepends On
eq_X_pow_char_pow_sub_C_of_natSepDegree_eq_one_of_irreducible πŸ“–mathematicalPolynomial.Monic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.natSepDegree
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
frobenius
Semifield.toCommSemiring
Polynomial.instSub
Monoid.toNatPow
Polynomial.X
Nat.instMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”natSepDegree_eq_one_iff_of_irreducible
one_pow
pow_one
not_irreducible_pow
Nat.Prime.ne_one
sub_pow_expChar
expChar_of_injective_ringHom
Polynomial.C_injective
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
frobenius_def
pow_mul
pow_succ
em
eq_X_pow_char_pow_sub_C_pow_of_natSepDegree_eq_one πŸ“–mathematicalPolynomial.Monic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.natSepDegree
Subring
DivisionRing.toRing
Field.toDivisionRing
SetLike.instMembership
Subring.instSetLike
RingHom.range
frobenius
Semifield.toCommSemiring
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
Polynomial.X
Nat.instMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”Polynomial.exists_monic_irreducible_factor
Polynomial.not_isUnit_of_natDegree_pos
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.natSepDegree_ne_zero_iff
LE.le.antisymm
Polynomial.natSepDegree_le_of_dvd
ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
LT.lt.ne'
Irreducible.natDegree_pos
eq_X_pow_char_pow_sub_C_of_natSepDegree_eq_one_of_irreducible
Polynomial.finiteMultiplicity_of_degree_pos_of_monic
Polynomial.degree_pos_of_irreducible
multiplicity_pos_of_dvd
FiniteMultiplicity.exists_eq_pow_mul_and_not_dvd
Polynomial.eq_one_of_monic_natDegree_zero
of_mul_monic_left
pow
Polynomial.natSepDegree_eq_zero_iff
add_eq_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
Polynomial.natSepDegree_pow_of_ne_zero
Polynomial.natSepDegree_mul_of_isCoprime
IsCoprime.pow_left
Irreducible.isCoprime_or_dvd
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
mul_one
eq_X_sub_C_pow_of_natSepDegree_eq_one_of_splits πŸ“–mathematicalPolynomial.Monic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.Splits
Polynomial.natSepDegree
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”instIsDomain
Polynomial.Splits.eq_prod_roots_of_monic
Polynomial.natSepDegree_eq_of_splits
Polynomial.Splits.map
Multiset.toFinset_card_eq_one_iff
Polynomial.map_id
Algebra.algebraMap_self
Polynomial.aroots_def
Multiset.prod_singleton
Multiset.prod_nsmul
Multiset.map_singleton
Multiset.map_nsmul
natSepDegree_eq_one_iff πŸ“–mathematicalPolynomial.Monic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.natSepDegree
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.X
Nat.instMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”eq_X_pow_char_pow_sub_C_pow_of_natSepDegree_eq_one
Polynomial.natSepDegree_pow
Polynomial.natSepDegree_X_pow_char_pow_sub_C
natSepDegree_eq_one_iff_of_irreducible πŸ“–mathematicalPolynomial.Monic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.natSepDegree
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Polynomial.X
Nat.instMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”Irreducible.natSepDegree_eq_one_iff_of_monic
natSepDegree_eq_one_iff_of_irreducible' πŸ“–mathematicalPolynomial.Monic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.natSepDegree
DFunLike.coe
AlgHom
CommSemiring.toSemiring
Semifield.toCommSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.expand
Monoid.toNatPow
Nat.instMonoid
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.X
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”Irreducible.natSepDegree_eq_one_iff_of_monic'

Polynomial.Separable

Theorems

NameKindAssumesProvesValidatesDepends On
natSepDegree_eq_natDegree πŸ“–mathematicalPolynomial.Separable
Semifield.toCommSemiring
Field.toSemifield
Polynomial.natSepDegree
Polynomial.natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”Polynomial.natSepDegree_eq_natDegree_of_separable

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
perfectField_iff_splits_of_natSepDegree_eq_one πŸ“–mathematicalβ€”PerfectField
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Polynomial.natSepDegree_zero
Polynomial.uniqueFactorizationMonoid
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsDomain
EuclideanDomain.to_principal_ideal_domain
UniqueFactorizationMonoid.factors_prod
Polynomial.Splits.mul
Polynomial.Splits.multisetProd
Polynomial.natSepDegree_le_of_dvd
UniqueFactorizationMonoid.dvd_of_mem_factors
Polynomial.Splits.of_natDegree_le_one
Polynomial.Separable.natSepDegree_eq_natDegree
UniqueFactorizationMonoid.irreducible_of_factor
IsUnit.splits
IsDomain.to_noZeroDivisors
Units.isUnit
ExpChar.exists
PerfectRing.toPerfectField
PerfectRing.ofSurjective
isReduced_of_noZeroDivisors
Polynomial.Splits.exists_eval_eq_zero
Polynomial.natSepDegree_X_pow_char_pow_sub_C
pow_one
LT.lt.ne'
Nat.instCanonicallyOrderedAdd
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instNontrivial
Nat.cast_pos
WithBot.instIsOrderedRing
IsStrictOrderedRing.toIsOrderedRing
WithBot.nontrivial
expChar_pos
Polynomial.degree_X_pow_sub_C
IsLocalRing.toNontrivial
Field.instIsLocalRing
sub_eq_zero
Polynomial.eval_C
Polynomial.eval_X_pow
Polynomial.eval_sub

minpoly

Theorems

NameKindAssumesProvesValidatesDepends On
natSepDegree_eq_one_iff_eq_X_pow_sub_C πŸ“–mathematicalβ€”Polynomial.natSepDegree
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Nat.instMonoid
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”natSepDegree_eq_one_iff_eq_expand_X_sub_C
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
Polynomial.expand_X
Polynomial.expand_C
natSepDegree_eq_one_iff_eq_X_sub_C_pow πŸ“–mathematicalβ€”Polynomial.natSepDegree
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
algebraMap
Polynomial
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.instSub
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Nat.instMonoid
β€”natSepDegree_eq_one_iff_eq_X_pow_sub_C
Polynomial.map_sub
Polynomial.map_pow
Polynomial.map_X
Polynomial.map_C
sub_eq_zero
Polynomial.aeval_C
Polynomial.aeval_X
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
aeval
RingHom.instRingHomClass
sub_pow_expChar_pow_of_commute
expChar_of_injective_ringHom
Polynomial.C_injective
expChar_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
IsDomain.toNontrivial
Polynomial.commute_X
natSepDegree_eq_one_iff_pow_mem
map_neg
RingHomClass.toAddMonoidHomClass
neg_one_pow_expChar_pow
neg_pow
zero_sub
Polynomial.coeff_C_zero
Polynomial.coeff_X_zero
Polynomial.coeff_map
neg_mul
one_mul
neg_neg
natSepDegree_eq_one_iff_eq_expand_X_sub_C πŸ“–mathematicalβ€”Polynomial.natSepDegree
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.expand
Monoid.toNatPow
Nat.instMonoid
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.X
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
β€”by_contra
eq_zero
Polynomial.natSepDegree_zero
Irreducible.natSepDegree_eq_one_iff_of_monic'
monic
irreducible
instIsDomain
Polynomial.natSepDegree_expand
Polynomial.natSepDegree_X_sub_C
natSepDegree_eq_one_iff_pow_mem πŸ“–mathematicalβ€”Polynomial.natSepDegree
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Subring
SetLike.instMembership
Subring.instSetLike
RingHom.range
DivisionRing.toRing
Field.toDivisionRing
algebraMap
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Nat.instMonoid
β€”map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Polynomial.aeval_C
Polynomial.aeval_X
natSepDegree_eq_one_iff_eq_X_pow_sub_C
aeval
Polynomial.X_pow_sub_C_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
expChar_pow_pos
LE.le.antisymm
LE.le.trans_eq
Polynomial.natSepDegree_le_of_dvd
dvd
Polynomial.natSepDegree_X_pow_char_pow_sub_C
Polynomial.natSepDegree_ne_zero_iff
natDegree_pos
IsDomain.toNontrivial
IsAlgebraic.isIntegral

---

← Back to Index