| Name | Category | Theorems |
SplittingField π | CompOp | 19 mathmath: Gal.smul_def, Gal.mapRoots_bijective, IsSplittingField.instFiniteSplittingField, Gal.restrictDvd_def, Gal.instIsScalarTowerSplittingField, SplittingField.instExpChar, SplittingField.splits, IsSplittingField.instIsTorsionFreeSplittingField, AlgebraicClosure.Monics.splits_finsetProd, IsSplittingField.splittingField, AlgebraicClosure.toSplittingField_coeff, Gal.splits_in_splittingField_of_comp, SplittingField.instCharZero, IsSplittingField.instFiniteDimensionalSplittingField, SplittingField.instCharP, Gal.ext_iff, Gal.card_of_separable, SplittingField.adjoin_rootSet, SplittingField.instNormal
|
SplittingFieldAux π | CompOp | 6 mathmath: SplittingFieldAux.succ, SplittingFieldAux.algebraMap_succ, SplittingFieldAux.adjoin_rootSet, SplittingFieldAux.scalar_tower', SplittingFieldAux.instIsSplittingFieldNatDegree, SplittingFieldAux.splits
|
SplittingFieldAuxAux π | CompOp | β |
factor π | CompOp | 11 mathmath: SplittingFieldAux.succ, SplittingFieldAux.algebraMap_succ, factor_dvd_of_natDegree_ne_zero, natDegree_removeFactor, factor_dvd_of_degree_ne_zero, SplittingFieldAux.scalar_tower', fact_irreducible_factor, natDegree_removeFactor', factor_dvd_of_not_isUnit, irreducible_factor, X_sub_C_mul_removeFactor
|
instAlgebraSplittingField π | CompOp | β |
instCommRingSplittingField π | CompOp | 7 mathmath: Gal.smul_def, Gal.mapRoots_bijective, Gal.restrictDvd_def, IsSplittingField.instIsTorsionFreeSplittingField, AlgebraicClosure.toSplittingField_coeff, Gal.card_of_separable, SplittingField.adjoin_rootSet
|
instInhabitedSplittingField π | CompOp | β |
instInhabitedSplittingFieldAux π | CompOp | β |
removeFactor π | CompOp | 6 mathmath: SplittingFieldAux.succ, SplittingFieldAux.algebraMap_succ, natDegree_removeFactor, SplittingFieldAux.scalar_tower', natDegree_removeFactor', X_sub_C_mul_removeFactor
|