Documentation Verification Report

Construction

πŸ“ Source: Mathlib/FieldTheory/SplittingField/Construction.lean

Statistics

MetricCount
DefinitionsalgEquiv, SplittingField, algEquivSplittingFieldAux, instAlgebra, instField, instGroupWithZero, instIsScalarTower, instSMulOfIsScalarTower, SplittingFieldAux, algebra, algebra', algebra'', algebra''', SplittingFieldAuxAux, factor, instAlgebraSplittingField, instCommRingSplittingField, instInhabitedSplittingField, instInhabitedSplittingFieldAux, removeFactor
20
TheoremsinstFiniteDimensionalSplittingField, instFiniteSplittingField, instIsTorsionFreeSplittingField, splittingField, adjoin_rootSet, instCharP, instCharZero, instExpChar, splits, adjoin_rootSet, algebraMap_succ, instIsSplittingFieldNatDegree, scalar_tower', splits, succ, X_sub_C_mul_removeFactor, fact_irreducible_factor, factor_dvd_of_degree_ne_zero, factor_dvd_of_natDegree_ne_zero, factor_dvd_of_not_isUnit, irreducible_factor, isCoprime_iff_aeval_ne_zero, natDegree_removeFactor, natDegree_removeFactor'
24
Total44

Polynomial

Definitions

NameCategoryTheorems
SplittingField πŸ“–CompOp
19 mathmath: Gal.smul_def, Gal.mapRoots_bijective, IsSplittingField.instFiniteSplittingField, Gal.restrictDvd_def, Gal.instIsScalarTowerSplittingField, SplittingField.instExpChar, SplittingField.splits, IsSplittingField.instIsTorsionFreeSplittingField, AlgebraicClosure.Monics.splits_finsetProd, IsSplittingField.splittingField, AlgebraicClosure.toSplittingField_coeff, Gal.splits_in_splittingField_of_comp, SplittingField.instCharZero, IsSplittingField.instFiniteDimensionalSplittingField, SplittingField.instCharP, Gal.ext_iff, Gal.card_of_separable, SplittingField.adjoin_rootSet, SplittingField.instNormal
SplittingFieldAux πŸ“–CompOp
6 mathmath: SplittingFieldAux.succ, SplittingFieldAux.algebraMap_succ, SplittingFieldAux.adjoin_rootSet, SplittingFieldAux.scalar_tower', SplittingFieldAux.instIsSplittingFieldNatDegree, SplittingFieldAux.splits
SplittingFieldAuxAux πŸ“–CompOpβ€”
factor πŸ“–CompOp
11 mathmath: SplittingFieldAux.succ, SplittingFieldAux.algebraMap_succ, factor_dvd_of_natDegree_ne_zero, natDegree_removeFactor, factor_dvd_of_degree_ne_zero, SplittingFieldAux.scalar_tower', fact_irreducible_factor, natDegree_removeFactor', factor_dvd_of_not_isUnit, irreducible_factor, X_sub_C_mul_removeFactor
instAlgebraSplittingField πŸ“–CompOpβ€”
instCommRingSplittingField πŸ“–CompOp
7 mathmath: Gal.smul_def, Gal.mapRoots_bijective, Gal.restrictDvd_def, IsSplittingField.instIsTorsionFreeSplittingField, AlgebraicClosure.toSplittingField_coeff, Gal.card_of_separable, SplittingField.adjoin_rootSet
instInhabitedSplittingField πŸ“–CompOpβ€”
instInhabitedSplittingFieldAux πŸ“–CompOpβ€”
removeFactor πŸ“–CompOp
6 mathmath: SplittingFieldAux.succ, SplittingFieldAux.algebraMap_succ, natDegree_removeFactor, SplittingFieldAux.scalar_tower', natDegree_removeFactor', X_sub_C_mul_removeFactor

Theorems

NameKindAssumesProvesValidatesDepends On
X_sub_C_mul_removeFactor πŸ“–mathematicalβ€”Polynomial
AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
factor
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AdjoinRoot.instField
fact_irreducible_factor
Field.toCommRing
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot.instCommRing
instMul
instSub
DivisionRing.toRing
Field.toDivisionRing
X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
AdjoinRoot.root
removeFactor
map
AdjoinRoot.of
β€”fact_irreducible_factor
factor_dvd_of_natDegree_ne_zero
mul_divByMonic_eq_iff_isRoot
IsRoot.def
eval_map
evalβ‚‚_mul
AdjoinRoot.evalβ‚‚_root
MulZeroClass.zero_mul
fact_irreducible_factor πŸ“–mathematicalβ€”Fact
Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
factor
β€”irreducible_factor
factor_dvd_of_degree_ne_zero πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
factor
β€”factor_dvd_of_not_isUnit
degree_eq_zero_of_isUnit
IsDomain.to_noZeroDivisors
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
factor_dvd_of_natDegree_ne_zero πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
factor
β€”factor_dvd_of_degree_ne_zero
natDegree_eq_of_degree_eq_some
factor_dvd_of_not_isUnit πŸ“–mathematicalIsUnit
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
factor
β€”dvd_zero
factor.eq_1
WfDvdMonoid.exists_irreducible_factor
UniqueFactorizationMonoid.toIsWellFounded
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
instIsDomain
EuclideanDomain.to_principal_ideal_domain
irreducible_factor πŸ“–mathematicalβ€”Irreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
factor
β€”factor.eq_1
irreducible_X
instIsDomain
isCoprime_iff_aeval_ne_zero πŸ“–mathematicalβ€”IsCoprime
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
commSemiring
Semifield.toCommSemiring
β€”aeval_ne_zero_of_isCoprime
IsDomain.toNontrivial
isCoprime_of_dvd
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
instIsDomain
Mathlib.Tactic.Contrapose.contrapose₃
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
not_and_or
fact_irreducible_factor
AdjoinRoot.aeval_eq
dvd_mul_of_dvd_left
factor_dvd_of_not_isUnit
natDegree_removeFactor πŸ“–mathematicalβ€”natDegree
AdjoinRoot
Field.toCommRing
factor
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AdjoinRoot.instField
fact_irreducible_factor
removeFactor
β€”fact_irreducible_factor
removeFactor.eq_1
natDegree_divByMonic
monic_X_sub_C
natDegree_map
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
natDegree_X_sub_C
natDegree_removeFactor' πŸ“–mathematicalnatDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
AdjoinRoot
Field.toCommRing
factor
AdjoinRoot.instField
fact_irreducible_factor
removeFactor
β€”fact_irreducible_factor
natDegree_removeFactor

Polynomial.IsSplittingField

Definitions

NameCategoryTheorems
algEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instFiniteDimensionalSplittingField πŸ“–mathematicalβ€”FiniteDimensional
Polynomial.SplittingField
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
Polynomial.SplittingField.instField
Algebra.toModule
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.SplittingField.instAlgebra
Algebra.id
β€”finiteDimensional
splittingField
instFiniteSplittingField πŸ“–mathematicalβ€”Finite
Polynomial.SplittingField
β€”Module.finite_of_finite
instFiniteDimensionalSplittingField
instIsTorsionFreeSplittingField πŸ“–mathematicalβ€”Module.IsTorsionFree
Polynomial.SplittingField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.instCommRingSplittingField
Algebra.toModule
Semifield.toCommSemiring
Polynomial.SplittingField.instField
Polynomial.SplittingField.instAlgebra
Algebra.id
β€”instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
splittingField πŸ“–mathematicalβ€”Polynomial.IsSplittingField
Polynomial.SplittingField
Polynomial.SplittingField.instField
Polynomial.SplittingField.instAlgebra
Semifield.toCommSemiring
Field.toSemifield
Algebra.id
β€”of_algEquiv
Polynomial.SplittingFieldAux.instIsSplittingFieldNatDegree

Polynomial.SplittingField

Definitions

NameCategoryTheorems
algEquivSplittingFieldAux πŸ“–CompOpβ€”
instAlgebra πŸ“–CompOp
13 mathmath: Polynomial.Gal.smul_def, Polynomial.Gal.mapRoots_bijective, Polynomial.Gal.restrictDvd_def, splits, Polynomial.IsSplittingField.instIsTorsionFreeSplittingField, AlgebraicClosure.Monics.splits_finsetProd, Polynomial.IsSplittingField.splittingField, AlgebraicClosure.toSplittingField_coeff, Polynomial.Gal.splits_in_splittingField_of_comp, Polynomial.IsSplittingField.instFiniteDimensionalSplittingField, Polynomial.Gal.card_of_separable, adjoin_rootSet, instNormal
instField πŸ“–CompOp
17 mathmath: Polynomial.Gal.smul_def, Polynomial.Gal.mapRoots_bijective, Polynomial.Gal.restrictDvd_def, Polynomial.Gal.instIsScalarTowerSplittingField, instExpChar, splits, Polynomial.IsSplittingField.instIsTorsionFreeSplittingField, AlgebraicClosure.Monics.splits_finsetProd, Polynomial.IsSplittingField.splittingField, AlgebraicClosure.toSplittingField_coeff, Polynomial.Gal.splits_in_splittingField_of_comp, instCharZero, Polynomial.IsSplittingField.instFiniteDimensionalSplittingField, instCharP, Polynomial.Gal.card_of_separable, adjoin_rootSet, instNormal
instGroupWithZero πŸ“–CompOpβ€”
instIsScalarTower πŸ“–CompOpβ€”
instSMulOfIsScalarTower πŸ“–CompOp
1 mathmath: Polynomial.Gal.instIsScalarTowerSplittingField

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_rootSet πŸ“–mathematicalβ€”Algebra.adjoin
Polynomial.SplittingField
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instField
instAlgebra
Algebra.id
Polynomial.rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.instCommRingSplittingField
instIsDomain
CommRing.toCommSemiring
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Polynomial.IsSplittingField.adjoin_rootSet
Polynomial.IsSplittingField.splittingField
instCharP πŸ“–mathematicalβ€”CharP
Polynomial.SplittingField
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
β€”charP_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
instCharZero πŸ“–mathematicalβ€”CharZero
Polynomial.SplittingField
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
β€”charZero_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
instExpChar πŸ“–mathematicalβ€”ExpChar
Polynomial.SplittingField
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
β€”expChar_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
splits πŸ“–mathematicalβ€”Polynomial.Splits
Polynomial.SplittingField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
instAlgebra
Algebra.id
β€”Polynomial.IsSplittingField.splits
Polynomial.IsSplittingField.splittingField

Polynomial.SplittingFieldAux

Definitions

NameCategoryTheorems
algebra πŸ“–CompOp
4 mathmath: algebraMap_succ, adjoin_rootSet, instIsSplittingFieldNatDegree, splits
algebra' πŸ“–CompOpβ€”
algebra'' πŸ“–CompOp
1 mathmath: scalar_tower'
algebra''' πŸ“–CompOp
2 mathmath: algebraMap_succ, scalar_tower'

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_rootSet πŸ“–mathematicalPolynomial.natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.adjoin
Polynomial.SplittingFieldAux
Semifield.toCommSemiring
field
algebra
Polynomial.rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”instIsDomain
Algebra.eq_top_iff
Subalgebra.range_le
Polynomial.map_ne_zero
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.rootSet_def
Polynomial.aroots_def
Polynomial.fact_irreducible_factor
algebraMap_succ
Polynomial.map_map
Polynomial.X_sub_C_mul_removeFactor
Polynomial.map_mul
Polynomial.roots_mul
Polynomial.map_sub
Polynomial.map_X
Polynomial.map_C
Polynomial.roots_X_sub_C
Multiset.toFinset_add
Finset.coe_union
Multiset.toFinset_singleton
Finset.coe_singleton
IsScalarTower.subalgebra'
IsScalarTower.right
Algebra.adjoin_union_eq_adjoin_adjoin
Set.image_singleton
scalar_tower'
Algebra.adjoin_algebraMap
AdjoinRoot.adjoinRoot_eq_top
Algebra.map_top
IsScalarTower.adjoin_range_toAlgHom
Polynomial.natDegree_removeFactor'
Subalgebra.restrictScalars_top
algebraMap_succ πŸ“–mathematicalβ€”algebraMap
Polynomial.SplittingFieldAux
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
field
algebra
RingHom.comp
AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.factor
Field.toCommRing
AdjoinRoot.instField
Polynomial.fact_irreducible_factor
Polynomial.removeFactor
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
algebra'''
AdjoinRoot.of
β€”β€”
instIsSplittingFieldNatDegree πŸ“–mathematicalβ€”Polynomial.IsSplittingField
Polynomial.SplittingFieldAux
Polynomial.natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
field
algebra
β€”splits
adjoin_rootSet
scalar_tower' πŸ“–mathematicalβ€”IsScalarTower
AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.factor
Polynomial.SplittingFieldAux
Field.toCommRing
AdjoinRoot.instField
Polynomial.fact_irreducible_factor
Polynomial.removeFactor
AdjoinRoot.instSMulAdjoinRoot
NonUnitalNonAssocSemiring.toDistribSMul
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsScalarTower.right
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
Algebra.toSMul
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
field
algebra'''
algebra''
β€”IsScalarTower.of_algebraMap_eq
Polynomial.fact_irreducible_factor
splits πŸ“–mathematicalPolynomial.natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.Splits
Polynomial.SplittingFieldAux
field
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
algebra
β€”Polynomial.Splits.of_degree_le_one
LE.le.trans
Polynomial.degree_map_le
le_trans
Polynomial.degree_le_natDegree
WithBot.coe_le_coe
zero_le_one
Nat.instZeroLEOneClass
Polynomial.fact_irreducible_factor
algebraMap_succ
Polynomial.map_map
Polynomial.X_sub_C_mul_removeFactor
Polynomial.map_mul
Polynomial.Splits.mul
Polynomial.Splits.map
Polynomial.Splits.X_sub_C
Polynomial.natDegree_removeFactor'
succ πŸ“–mathematicalβ€”Polynomial.SplittingFieldAux
AdjoinRoot
Field.toCommRing
Polynomial.factor
AdjoinRoot.instField
Polynomial.fact_irreducible_factor
Polynomial.removeFactor
β€”β€”

---

← Back to Index