Documentation Verification Report

IsSplittingField

📁 Source: Mathlib/FieldTheory/SplittingField/IsSplittingField.lean

Statistics

MetricCount
DefinitionsIsSplittingField
1
Theoremsadjoin_rootSet_isSplittingField, isSplittingField_iff, splits_iff_mem, splits_of_splits, mem_intermediateField_of_minpoly_splits, isAlgebraic, splits, adjoin_rootSet, adjoin_rootSet', adjoin_rootSet_eq_range, finiteDimensional, map, mul, of_algEquiv, splits, splits', splits_iff, isSplittingField_C, isSplittingField_iff_intermediateField
19
Total20

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_rootSet_isSplittingField 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
Polynomial.IsSplittingField
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Polynomial.rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
toField
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
instIsDomain
IsScalarTower.left
isSplittingField_iff
splits_of_splits
subset_adjoin
isSplittingField_iff 📖mathematicalPolynomial.IsSplittingField
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
Polynomial.Splits
Polynomial.map
algebraMap
adjoin
Polynomial.rootSet
instIsDomain
IsScalarTower.left
instIsDomain
toSubalgebra_injective
adjoin_toSubalgebra_of_isAlgebraic
isAlgebraic_of_mem_rootSet
Polynomial.Splits.adjoin_rootSet_eq_range
DivisionRing.isSimpleRing
range_val
Polynomial.IsSplittingField.splits'
Polynomial.IsSplittingField.adjoin_rootSet'
splits_iff_mem 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
instIsDomain
Polynomial.Splits.image_rootSet
DivisionRing.isSimpleRing
Set.forall_mem_image
splits_of_splits
splits_of_splits 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
instIsDomain
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsScalarTower.left
Polynomial.Splits.of_splits_map
DivisionRing.isSimpleRing
IsScalarTower.algebraMap_eq
isScalarTower_mid'
Polynomial.map_map
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.eval_map_algebraMap
Polynomial.rootSet_def

IsIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
mem_intermediateField_of_minpoly_splits 📖IsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IntermediateField.toField
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
IntermediateField.algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
minpoly
IsScalarTower.left
IntermediateField.fieldRange_val
mem_range_algebraMap_of_minpoly_splits
IntermediateField.isScalarTower_mid'

Polynomial

Definitions

NameCategoryTheorems
IsSplittingField 📖CompData
21 mathmath: IsSplittingField.mul, isSplittingField_X_pow_sub_C_of_root_adjoin_eq_top, FiniteField.instIsSplittingFieldExtensionHSubPolynomialHPowNatXCard, IsCyclotomicExtension.isSplittingField_X_pow_sub_one, IsGalois.is_separable_splitting_field, FiniteField.isSplittingField_of_nat_card_eq, Normal.exists_isSplittingField, IsSplittingField.splittingField, FiniteField.isSplittingField_of_card_eq, SplittingFieldAux.instIsSplittingFieldNatDegree, isSplittingField_AdjoinRoot_X_pow_sub_C, isSplittingField_C, IntermediateField.isSplittingField_iff, IsCyclotomicExtension.splitting_field_cyclotomic, FiniteField.isSplittingField_sub, IsSplittingField.of_algEquiv, IsGalois.tfae, isSplittingField_iff_intermediateField, IsSplittingField.map, isCyclic_tfae, IntermediateField.adjoin_rootSet_isSplittingField

Theorems

NameKindAssumesProvesValidatesDepends On
isSplittingField_C 📖mathematicalIsSplittingField
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
DFunLike.coe
RingHom
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Semiring.toNonAssocSemiring
semiring
RingHom.instFunLike
C
map_C
instIsDomain
rootSet_C
Algebra.adjoin_empty
Subalgebra.bot_eq_top_of_finrank_eq_one
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.self
Module.finrank_self

Polynomial.IsSplittingField

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_rootSet 📖mathematicalAlgebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
adjoin_rootSet'
adjoin_rootSet' 📖mathematicalAlgebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Top.top
Subalgebra
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
adjoin_rootSet_eq_range 📖mathematicalAlgebra.adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
AlgHom.range
instIsDomain
Polynomial.Splits.adjoin_rootSet_eq_range
DivisionRing.isSimpleRing
splits
adjoin_rootSet
finiteDimensional 📖mathematicalFiniteDimensional
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
Algebra.toModule
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instIsDomain
fg_adjoin_of_finite
Finset.finite_toSet
Polynomial.rootSet_zero
IsAlgebraic.isIntegral
Polynomial.mem_rootSet'
adjoin_rootSet
Algebra.top_toSubmodule
map 📖mathematicalPolynomial.IsSplittingField
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
algebraMap
Polynomial.map_map
IsScalarTower.algebraMap_eq
splits
Subalgebra.restrictScalars_injective
instIsDomain
Polynomial.rootSet.eq_1
Polynomial.aroots.eq_1
Subalgebra.restrictScalars_top
eq_top_iff
adjoin_rootSet
Algebra.adjoin_le_iff
Algebra.subset_adjoin
mul 📖mathematicalPolynomial.IsSplittingField
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instMul
Polynomial.map_mul
IsScalarTower.algebraMap_eq
Polynomial.map_map
Polynomial.Splits.mul
Polynomial.Splits.map
splits
instIsDomain
Polynomial.rootSet.eq_1
Polynomial.aroots_mul
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
mul_ne_zero
Polynomial.instNoZeroDivisors
IsDomain.to_noZeroDivisors
Multiset.toFinset_add
Finset.coe_union
IsScalarTower.subalgebra'
IsScalarTower.right
Algebra.adjoin_union_eq_adjoin_adjoin
Polynomial.aroots_def
Polynomial.Splits.roots_map
DivisionRing.isSimpleRing
Multiset.toFinset_map
Finset.coe_image
Algebra.adjoin_algebraMap
adjoin_rootSet
Algebra.map_top
IsScalarTower.adjoin_range_toAlgHom
Subalgebra.restrictScalars_top
of_algEquiv 📖mathematicalPolynomial.IsSplittingFieldAlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
Polynomial.map_map
Polynomial.Splits.map
splits
instIsDomain
AlgHom.range_eq_top
AlgEquiv.surjective
Polynomial.Splits.adjoin_rootSet_eq_range
DivisionRing.isSimpleRing
adjoin_rootSet
splits 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
splits'
splits' 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
splits_iff 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Top.top
Subalgebra
Semifield.toCommSemiring
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
eq_bot_iff
instIsDomain
adjoin_rootSet
Polynomial.rootSet.eq_1
Polynomial.aroots.eq_1
Polynomial.Splits.roots_map
DivisionRing.isSimpleRing
Algebra.adjoin_le_iff
Finset.mem_image
Finset.mem_coe
Multiset.toFinset_map
SetLike.mem_coe
Subalgebra.algebraMap_mem
Polynomial.map_id
RingEquiv.toRingHom_refl
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
Algebra.bijective_algebraMap_iff
IsLocalRing.toNontrivial
Field.instIsLocalRing
RingEquiv.self_trans_symm
RingEquiv.toRingHom_trans
Polynomial.map_map
Polynomial.Splits.map
splits

Polynomial.IsSplittingField.IsScalarTower

Theorems

NameKindAssumesProvesValidatesDepends On
isAlgebraic 📖mathematicalAlgebra.IsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.IsSplittingField.finiteDimensional
Algebra.IsAlgebraic.trans
IsDomain.to_noZeroDivisors
instIsDomain
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
splits 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.mapAlg
Polynomial.mapAlg_comp
Polynomial.mapAlg_eq_map
Polynomial.IsSplittingField.splits

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isSplittingField_iff_intermediateField 📖mathematicalPolynomial.IsSplittingField
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
IntermediateField.adjoin
Polynomial.rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
instIsDomain
IntermediateField.toSubalgebra_injective
IntermediateField.adjoin_toSubalgebra_of_isAlgebraic
isAlgebraic_of_mem_rootSet

---

← Back to Index