Documentation Verification Report

Basic

📁 Source: Mathlib/Geometry/Diffeology/Basic.lean

Statistics

MetricCount
DefinitionsDiffeologicalSpace, CorePlotsOn, dTopology, isPlot, isPlotOn, dTopology, ofCorePlotsOn, plots, replaceDTopology, DSmooth, IsContDiffCompatible, IsDTopologyCompatible, IsPlot, dTopology, instDiffeologicalSpaceEuclideanSpaceRealOfFintype, instDiffeologicalSpaceReal, toDiffeology
17
TheoremsdSmooth, isPlot, isOpen_iff_preimages_plots, isPlotOn_congr, isPlotOn_reparam, isPlotOn_univ, isPlot_const, locality, constant_plots, ext, ext_iff, isOpen_iff_preimages_plots, locality, plot_reparam, replaceDTopology_eq, comp, comp', contDiff, continuous, continuous', isPlot, isPlot_iff, dTop_eq, contDiff, continuous, dSmooth, dSmooth_comp, dSmooth_comp', dSmooth_const, dSmooth_id, dSmooth_id', dSmooth_iff, dSmooth_iff_contDiff, instIsContDiffCompatible, instIsDTopologyCompatible, isOpen_iff_preimages_plots, isPlot_const, isPlot_id, isPlot_id', isPlot_iff_contDiff, isPlot_iff_dSmooth, isPlot_reparam, isContDiffCompatible_iff_eq_toDiffeology
43
Total60

ContDiff

Theorems

NameKindAssumesProvesValidatesDepends On
dSmooth 📖mathematicalContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
WithTop.some
ENat
Top.top
instTopENat
Diffeology.DSmoothisPlot
comp
fact_one_le_two_ennreal
Diffeology.IsPlot.contDiff
isPlot 📖mathematicalContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
EuclideanSpace
PiLp.normedAddCommGroup
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
fact_one_le_two_ennreal
Fin.fintype
Real.normedAddCommGroup
PiLp.normedSpace
NontriviallyNormedField.toNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
WithTop.some
ENat
Top.top
instTopENat
Diffeology.IsPlotfact_one_le_two_ennreal
Diffeology.isPlot_iff_contDiff

DiffeologicalSpace

Definitions

NameCategoryTheorems
CorePlotsOn 📖CompData
dTopology 📖CompOp
1 mathmath: isOpen_iff_preimages_plots
ofCorePlotsOn 📖CompOp
plots 📖CompOp
1 mathmath: constant_plots
replaceDTopology 📖CompOp
1 mathmath: replaceDTopology_eq

Theorems

NameKindAssumesProvesValidatesDepends On
constant_plots 📖mathematicalSet
Set.instMembership
plots
ext 📖Diffeology.IsPlotfact_one_le_two_ennreal
TopologicalSpace.ext
ext_iff 📖mathematicalDiffeology.IsPlotext
isOpen_iff_preimages_plots 📖mathematicalTopologicalSpace.IsOpen
dTopology
IsOpen
EuclideanSpace
Real
PiLp.topologicalSpace
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.preimage
locality 📖IsOpen
EuclideanSpace
Real
PiLp.topologicalSpace
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set
Set.instMembership
plots
plot_reparam 📖Set
Set.instMembership
plots
ContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
EuclideanSpace
PiLp.normedAddCommGroup
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
fact_one_le_two_ennreal
Fin.fintype
Real.normedAddCommGroup
PiLp.normedSpace
NontriviallyNormedField.toNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
WithTop.some
ENat
Top.top
instTopENat
replaceDTopology_eq 📖mathematicaldTopologyreplaceDTopologyext

DiffeologicalSpace.CorePlotsOn

Definitions

NameCategoryTheorems
dTopology 📖CompOp
1 mathmath: isOpen_iff_preimages_plots
isPlot 📖MathDef
2 mathmath: isPlot_const, isPlotOn_univ
isPlotOn 📖MathDef
2 mathmath: isPlotOn_congr, isPlotOn_univ

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen_iff_preimages_plots 📖mathematicalTopologicalSpace.IsOpen
dTopology
IsOpen
EuclideanSpace
Real
PiLp.topologicalSpace
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.preimage
isPlotOn_congr 📖mathematicalIsOpen
EuclideanSpace
Real
PiLp.topologicalSpace
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.EqOn
isPlotOn
isPlotOn_reparam 📖IsOpen
EuclideanSpace
Real
PiLp.topologicalSpace
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.MapsTo
isPlotOn
ContDiffOn
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
PiLp.normedAddCommGroup
fact_one_le_two_ennreal
Fin.fintype
Real.normedAddCommGroup
PiLp.normedSpace
NontriviallyNormedField.toNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
WithTop.some
ENat
Top.top
instTopENat
isPlotOn_univ 📖mathematicalisPlotOn
Set.univ
EuclideanSpace
Real
isOpen_univ
PiLp.topologicalSpace
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
isPlot
isPlot_const 📖mathematicalisPlot
locality 📖IsOpen
EuclideanSpace
Real
PiLp.topologicalSpace
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set
Set.instMembership
isPlotOn

Diffeology

Definitions

NameCategoryTheorems
DSmooth 📖MathDef
8 mathmath: dSmooth_const, IsPlot.dSmooth, dSmooth_id, isPlot_iff_dSmooth, ContDiff.dSmooth, dSmooth_iff, dSmooth_id', dSmooth_iff_contDiff
IsContDiffCompatible 📖CompData
2 mathmath: instIsContDiffCompatible, NormedSpace.isContDiffCompatible_iff_eq_toDiffeology
IsDTopologyCompatible 📖CompData
1 mathmath: instIsDTopologyCompatible
IsPlot 📖MathDef
10 mathmath: isPlot_id', DSmooth.isPlot, isPlot_iff_contDiff, isPlot_iff_dSmooth, IsContDiffCompatible.isPlot_iff, isPlot_id, DiffeologicalSpace.ext_iff, ContDiff.isPlot, isPlot_const, dSmooth_iff
dTopology 📖CompOp
4 mathmath: DSmooth.continuous, isOpen_iff_preimages_plots, IsPlot.continuous, IsDTopologyCompatible.dTop_eq
instDiffeologicalSpaceEuclideanSpaceRealOfFintype 📖CompOp
4 mathmath: isPlot_id', IsPlot.dSmooth, isPlot_iff_dSmooth, isPlot_id
instDiffeologicalSpaceReal 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
dSmooth_const 📖mathematicalDSmoothisPlot_const
dSmooth_id 📖mathematicalDSmoothCompTriple.comp_eq
CompTriple.instId_comp
CompTriple.instIsIdId
dSmooth_id' 📖mathematicalDSmoothdSmooth_id
dSmooth_iff 📖mathematicalDSmooth
IsPlot
EuclideanSpace
Real
dSmooth_iff_contDiff 📖mathematicalDSmooth
ContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
WithTop.some
ENat
Top.top
instTopENat
DSmooth.contDiff
ContDiff.dSmooth
instIsContDiffCompatible 📖mathematicalIsContDiffCompatible
NormedSpace.toDiffeology
instIsDTopologyCompatible 📖mathematicalIsDTopologyCompatible
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toDiffeology
isOpen_iff_preimages_plots 📖mathematicalIsOpen
dTopology
EuclideanSpace
Real
PiLp.topologicalSpace
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.preimage
DiffeologicalSpace.isOpen_iff_preimages_plots
isPlot_const 📖mathematicalIsPlotDiffeologicalSpace.constant_plots
isPlot_id 📖mathematicalIsPlot
EuclideanSpace
Real
instDiffeologicalSpaceEuclideanSpaceRealOfFintype
Fin.fintype
contDiff_id
fact_one_le_two_ennreal
isPlot_id' 📖mathematicalIsPlot
EuclideanSpace
Real
instDiffeologicalSpaceEuclideanSpaceRealOfFintype
Fin.fintype
isPlot_id
isPlot_iff_contDiff 📖mathematicalIsPlot
ContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
EuclideanSpace
PiLp.normedAddCommGroup
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
fact_one_le_two_ennreal
Fin.fintype
Real.normedAddCommGroup
PiLp.normedSpace
NontriviallyNormedField.toNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
WithTop.some
ENat
Top.top
instTopENat
IsContDiffCompatible.isPlot_iff
isPlot_iff_dSmooth 📖mathematicalIsPlot
DSmooth
EuclideanSpace
Real
instDiffeologicalSpaceEuclideanSpaceRealOfFintype
Fin.fintype
IsPlot.dSmooth
DSmooth.isPlot
isPlot_reparam 📖IsPlot
ContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
EuclideanSpace
PiLp.normedAddCommGroup
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
fact_one_le_two_ennreal
Fin.fintype
Real.normedAddCommGroup
PiLp.normedSpace
NontriviallyNormedField.toNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
WithTop.some
ENat
Top.top
instTopENat
fact_one_le_two_ennreal
DiffeologicalSpace.plot_reparam

Diffeology.DSmooth

Theorems

NameKindAssumesProvesValidatesDepends On
comp 📖Diffeology.DSmooth
comp' 📖Diffeology.DSmoothcomp
contDiff 📖mathematicalDiffeology.DSmoothContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
WithTop.some
ENat
Top.top
instTopENat
RingHomInvPair.ids
fact_one_le_two_ennreal
SeminormedAddCommGroup.toIsTopologicalAddGroup
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
ContinuousLinearEquiv.symm_comp_self
ContDiff.comp
Diffeology.IsPlot.contDiff
ContDiff.isPlot
ContinuousLinearEquiv.contDiff
continuous 📖mathematicalDiffeology.DSmoothContinuous
Diffeology.dTopology
Diffeology.isOpen_iff_preimages_plots
continuous' 📖mathematicalDiffeology.DSmoothContinuousDiffeology.IsDTopologyCompatible.dTop_eq
continuous
isPlot 📖mathematicalDiffeology.DSmooth
EuclideanSpace
Real
Diffeology.instDiffeologicalSpaceEuclideanSpaceRealOfFintype
Fin.fintype
Diffeology.IsPlotcontDiff_id
fact_one_le_two_ennreal

Diffeology.IsContDiffCompatible

Theorems

NameKindAssumesProvesValidatesDepends On
isPlot_iff 📖mathematicalDiffeology.IsPlot
ContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
EuclideanSpace
PiLp.normedAddCommGroup
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
fact_one_le_two_ennreal
Fin.fintype
Real.normedAddCommGroup
PiLp.normedSpace
NontriviallyNormedField.toNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
WithTop.some
ENat
Top.top
instTopENat

Diffeology.IsDTopologyCompatible

Theorems

NameKindAssumesProvesValidatesDepends On
dTop_eq 📖mathematicalDiffeology.dTopology

Diffeology.IsPlot

Theorems

NameKindAssumesProvesValidatesDepends On
contDiff 📖mathematicalDiffeology.IsPlotContDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
EuclideanSpace
PiLp.normedAddCommGroup
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
fact_one_le_two_ennreal
Fin.fintype
Real.normedAddCommGroup
PiLp.normedSpace
NontriviallyNormedField.toNormedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
InnerProductSpace.toNormedSpace
Real.instRCLike
RCLike.toInnerProductSpaceReal
WithTop.some
ENat
Top.top
instTopENat
fact_one_le_two_ennreal
Diffeology.isPlot_iff_contDiff
continuous 📖mathematicalDiffeology.IsPlotContinuous
EuclideanSpace
Real
PiLp.topologicalSpace
ENNReal
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Diffeology.dTopology
continuous_def
Diffeology.isOpen_iff_preimages_plots
dSmooth 📖mathematicalDiffeology.IsPlotDiffeology.DSmooth
EuclideanSpace
Real
Diffeology.instDiffeologicalSpaceEuclideanSpaceRealOfFintype
Fin.fintype
Diffeology.isPlot_reparam
dSmooth_comp 📖mathematicalDiffeology.IsPlot
Diffeology.DSmooth
EuclideanSpace
Real
dSmooth_comp' 📖Diffeology.IsPlot
Diffeology.DSmooth

NormedSpace

Definitions

NameCategoryTheorems
toDiffeology 📖CompOp
3 mathmath: Diffeology.instIsDTopologyCompatible, Diffeology.instIsContDiffCompatible, isContDiffCompatible_iff_eq_toDiffeology

Theorems

NameKindAssumesProvesValidatesDepends On
isContDiffCompatible_iff_eq_toDiffeology 📖mathematicalDiffeology.IsContDiffCompatible
toDiffeology
DiffeologicalSpace.ext
Diffeology.IsContDiffCompatible.isPlot_iff
Diffeology.instIsContDiffCompatible

(root)

Definitions

NameCategoryTheorems
DiffeologicalSpace 📖CompData

---

← Back to Index