Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Geometry/Euclidean/Angle/Oriented/Basic.lean

Statistics

MetricCount
Definitionsoangle
1
Theoremsoangle, abs_oangle_sub_left_toReal_lt_pi_div_two, abs_oangle_sub_right_toReal_lt_pi_div_two, angle_eq_abs_oangle_toReal, angle_eq_iff_oangle_eq_neg_of_sign_eq_neg, angle_eq_iff_oangle_eq_of_sign_eq, angle_eq_iff_oangle_eq_or_sameRay, continuousAt_oangle, cos_oangle_eq_cos_angle, cos_oangle_eq_inner_div_norm_mul_norm, eq_iff_norm_eq_and_oangle_eq_zero, eq_iff_norm_eq_of_oangle_eq_zero, eq_iff_oangle_eq_zero_of_norm_eq, eq_zero_or_angle_eq_zero_or_pi_of_sign_oangle_eq_zero, eq_zero_or_oangle_eq_iff_inner_eq_zero, inner_eq_norm_mul_norm_mul_cos_oangle, inner_eq_zero_of_oangle_eq_neg_pi_div_two, inner_eq_zero_of_oangle_eq_pi_div_two, inner_rev_eq_zero_of_oangle_eq_neg_pi_div_two, inner_rev_eq_zero_of_oangle_eq_pi_div_two, left_ne_zero_of_oangle_eq_neg_pi_div_two, left_ne_zero_of_oangle_eq_pi, left_ne_zero_of_oangle_eq_pi_div_two, left_ne_zero_of_oangle_ne_zero, left_ne_zero_of_oangle_sign_eq_neg_one, left_ne_zero_of_oangle_sign_eq_one, left_ne_zero_of_oangle_sign_ne_zero, ne_of_oangle_eq_neg_pi_div_two, ne_of_oangle_eq_pi, ne_of_oangle_eq_pi_div_two, ne_of_oangle_ne_zero, ne_of_oangle_sign_eq_neg_one, ne_of_oangle_sign_eq_one, ne_of_oangle_sign_ne_zero, oangle_add, oangle_add_cyc3, oangle_add_cyc3_neg_left, oangle_add_cyc3_neg_right, oangle_add_oangle_rev, oangle_add_oangle_rev_neg_left, oangle_add_oangle_rev_neg_right, oangle_add_swap, oangle_eq_angle_of_sign_eq_one, oangle_eq_angle_or_eq_neg_angle, oangle_eq_neg_angle_of_sign_eq_neg_one, oangle_eq_neg_of_angle_eq_of_sign_eq_neg, oangle_eq_of_angle_eq_of_sign_eq, oangle_eq_pi_iff_angle_eq_pi, oangle_eq_pi_iff_oangle_rev_eq_pi, oangle_eq_pi_iff_sameRay_neg, oangle_eq_pi_sub_two_zsmul_oangle_sub_of_norm_eq, oangle_eq_zero_iff_angle_eq_zero, oangle_eq_zero_iff_oangle_rev_eq_zero, oangle_eq_zero_iff_sameRay, oangle_eq_zero_or_eq_pi_iff_not_linearIndependent, oangle_eq_zero_or_eq_pi_iff_right_eq_smul, oangle_map, oangle_map_complex, oangle_ne_zero_and_ne_pi_iff_linearIndependent, oangle_neg_left, oangle_neg_left_eq_neg_right, oangle_neg_neg, oangle_neg_orientation_eq_neg, oangle_neg_right, oangle_neg_self_left, oangle_neg_self_right, oangle_rev, oangle_self, oangle_sign_add_left, oangle_sign_add_right, oangle_sign_add_smul_left, oangle_sign_neg_left, oangle_sign_neg_right, oangle_sign_smul_add_right, oangle_sign_smul_add_smul_left, oangle_sign_smul_add_smul_right, oangle_sign_smul_add_smul_smul_add_smul, oangle_sign_smul_left, oangle_sign_smul_right, oangle_sign_smul_sub_left, oangle_sign_smul_sub_right, oangle_sign_sub_left, oangle_sign_sub_left_eq_neg, oangle_sign_sub_left_swap, oangle_sign_sub_right, oangle_sign_sub_right_eq_neg, oangle_sign_sub_right_swap, oangle_sign_sub_smul_left, oangle_sign_sub_smul_right, oangle_smul_add_right_eq_zero_or_eq_pi_iff, oangle_smul_left_of_neg, oangle_smul_left_of_pos, oangle_smul_left_self_of_nonneg, oangle_smul_right_of_neg, oangle_smul_right_of_pos, oangle_smul_right_self_of_nonneg, oangle_smul_smul_self_of_nonneg, oangle_sub_eq_oangle_sub_rev_of_norm_eq, oangle_sub_left, oangle_sub_right, oangle_zero_left, oangle_zero_right, right_ne_zero_of_oangle_eq_neg_pi_div_two, right_ne_zero_of_oangle_eq_pi, right_ne_zero_of_oangle_eq_pi_div_two, right_ne_zero_of_oangle_ne_zero, right_ne_zero_of_oangle_sign_eq_neg_one, right_ne_zero_of_oangle_sign_eq_one, right_ne_zero_of_oangle_sign_ne_zero, two_zsmul_oangle_left_of_span_eq, two_zsmul_oangle_neg_left, two_zsmul_oangle_neg_right, two_zsmul_oangle_neg_self_left, two_zsmul_oangle_neg_self_right, two_zsmul_oangle_of_span_eq_of_span_eq, two_zsmul_oangle_right_of_span_eq, two_zsmul_oangle_smul_left_of_ne_zero, two_zsmul_oangle_smul_left_self, two_zsmul_oangle_smul_right_of_ne_zero, two_zsmul_oangle_smul_right_self, two_zsmul_oangle_smul_smul_self
121
Total122

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
oangle πŸ“–mathematicalβ€”Orientation.oangle
Complex
instNormedAddCommGroup
instInnerProductSpaceRealComplex
finrank_real_complex_fact
orientation
Real.Angle.coe
arg
instMul
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
RingHom.instFunLike
starRingEnd
instStarRing
β€”finrank_real_complex_fact
smulCommClass_self
kahler
mul_comm

Orientation

Definitions

NameCategoryTheorems
oangle πŸ“–CompOp
108 mathmath: oangle_sign_smul_add_right, oangle_eq_zero_or_eq_pi_iff_right_eq_smul, oangle_add, oangle_add_swap, oangle_sign_sub_left_swap, oangle_add_left_smul_rotation_pi_div_two, oangle_eq_zero_iff_oangle_rev_eq_zero, eq_iff_norm_eq_and_oangle_eq_zero, tan_oangle_add_left_smul_rotation_pi_div_two, oangle_eq_two_zsmul_oangle_sub_of_norm_eq, two_zsmul_oangle_smul_left_of_ne_zero, two_zsmul_oangle_neg_left, oangle_zero_left, tan_oangle_add_right_smul_rotation_pi_div_two, Complex.oangle, two_zsmul_oangle_neg_self_right, oangle_eq_pi_iff_oangle_rev_eq_pi, oangle_neg_right, oangle_sign_sub_right, oangle_smul_left_of_neg, oangle_sign_sub_smul_left, oangle_eq_pi_iff_angle_eq_pi, oangle_neg_left_eq_neg_right, oangle_sign_sub_smul_right, oangle_smul_left_self_of_nonneg, oangle_eq_angle_or_eq_neg_angle, oangle_neg_self_left, oangle_eq_zero_iff_sameRay, angle_eq_iff_oangle_eq_or_sameRay, oangle_rotation_left, oangle_eq_zero_iff_angle_eq_zero, oangle_rotation_oangle_right, oangle_add_oangle_rev, oangle_self, oangle_rotation, oangle_rotation_self_left, oangle_eq_iff_eq_pos_smul_rotation_of_ne_zero, inner_eq_norm_mul_norm_mul_cos_oangle, oangle_sign_neg_left, oangle_sub_eq_oangle_sub_rev_of_norm_eq, two_zsmul_oangle_of_span_eq_of_span_eq, oangle_eq_iff_eq_pos_smul_rotation_or_eq_zero, oangle_neg_left, oangle_rotation_oangle_left, oangle_sign_smul_left, oangle_sign_sub_right_eq_neg, oangle_sign_smul_add_smul_smul_add_smul, oangle_sign_smul_sub_left, oangle_zero_right, oangle_rotation_right, oangle_sub_left, continuousAt_oangle, oangle_sub_right_smul_rotation_pi_div_two, oangle_sign_sub_left_eq_neg, oangle_add_cyc3, oangle_neg_self_right, oangle_sign_sub_left, cos_oangle_eq_cos_angle, oangle_eq_zero_or_eq_pi_iff_not_linearIndependent, oangle_sign_smul_right, oangle_sign_add_smul_left, oangle_sub_left_smul_rotation_pi_div_two, oangle_eq_iff_eq_norm_div_norm_smul_rotation_or_eq_zero, oangle_add_right_smul_rotation_pi_div_two, oangle_sign_sub_right_swap, oangle_smul_right_of_neg, two_zsmul_oangle_neg_self_left, oangle_eq_pi_sub_two_zsmul_oangle_sub_of_norm_eq, oangle_add_cyc3_neg_left, oangle_map, oangle_smul_smul_self_of_nonneg, eq_zero_or_oangle_eq_iff_inner_eq_zero, oangle_sign_add_left, two_zsmul_oangle_smul_right_self, oangle_sign_neg_right, angle_eq_abs_oangle_toReal, oangle_eq_iff_eq_norm_div_norm_smul_rotation_of_ne_zero, oangle_rev, oangle_add_oangle_rev_neg_left, two_zsmul_oangle_neg_right, two_zsmul_oangle_sub_eq_two_zsmul_oangle_sub_of_norm_eq, two_zsmul_oangle_smul_right_of_ne_zero, eq_iff_oangle_eq_zero_of_norm_eq, oangle_smul_add_right_eq_zero_or_eq_pi_iff, two_zsmul_oangle_left_of_span_eq, two_zsmul_oangle_smul_left_self, abs_oangle_sub_left_toReal_lt_pi_div_two, oangle_sign_smul_add_smul_right, oangle_eq_pi_iff_sameRay_neg, oangle_rotation_self_right, oangle_sign_add_right, oangle_smul_right_of_pos, oangle_map_complex, oangle_neg_neg, oangle_smul_right_self_of_nonneg, oangle_eq_two_zsmul_oangle_sub_of_norm_eq_real, oangle_neg_orientation_eq_neg, oangle_sign_smul_add_smul_left, oangle_sub_right, two_zsmul_oangle_smul_smul_self, rotation_oangle_eq_iff_norm_eq, oangle_sign_smul_sub_right, oangle_add_cyc3_neg_right, cos_oangle_eq_inner_div_norm_mul_norm, two_zsmul_oangle_right_of_span_eq, abs_oangle_sub_right_toReal_lt_pi_div_two, oangle_smul_left_of_pos, oangle_add_oangle_rev_neg_right

Theorems

NameKindAssumesProvesValidatesDepends On
abs_oangle_sub_left_toReal_lt_pi_div_two πŸ“–mathematicalNorm.norm
NormedAddCommGroup.toNorm
Real
Real.instLT
abs
Real.lattice
Real.instAddGroup
Real.Angle.toReal
oangle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
oangle.congr_simp
sub_self
oangle_zero_left
Real.Angle.toReal_zero
abs_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsOrderedRing
Real.instNontrivial
oangle_sign_sub_left_swap
oangle_eq_pi_sub_two_zsmul_oangle_sub_of_norm_eq
Real.Angle.sign_pi_sub
Real.Angle.sign_two_zsmul_eq_sign_iff
neg_sub
oangle_eq_pi_iff_sameRay_neg
oangle_eq_pi_iff_oangle_rev_eq_pi
exists_nonneg_left_iff_sameRay
one_smul
zero_add
add_eq_right
AddRightCancelSemigroup.toIsRightCancelAdd
norm_ne_zero_iff
mul_left_eq_selfβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Real.instIsDomain
abs_of_pos
Left.add_pos_of_nonneg_of_pos
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
one_pos
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Real.norm_eq_abs
norm_smul
NormedSpace.toNormSMulClass
add_smul
eq_sub_iff_add_eq
abs_oangle_sub_right_toReal_lt_pi_div_two πŸ“–mathematicalNorm.norm
NormedAddCommGroup.toNorm
Real
Real.instLT
abs
Real.lattice
Real.instAddGroup
Real.Angle.toReal
oangle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
abs_oangle_sub_left_toReal_lt_pi_div_two
oangle_sub_eq_oangle_sub_rev_of_norm_eq
angle_eq_abs_oangle_toReal πŸ“–mathematicalβ€”InnerProductGeometry.angle
abs
Real
Real.lattice
Real.instAddGroup
Real.Angle.toReal
oangle
β€”Real.instIsStrictOrderedRing
InnerProductGeometry.angle_nonneg
InnerProductGeometry.angle_le_pi
oangle_eq_angle_or_eq_neg_angle
Real.Angle.abs_toReal_coe_eq_self_iff
Real.Angle.abs_toReal_neg_coe_eq_self_iff
angle_eq_iff_oangle_eq_neg_of_sign_eq_neg πŸ“–mathematicalReal.Angle.sign
oangle
SignType
SignType.instNeg
InnerProductGeometry.angle
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
oangle_rev
InnerProductGeometry.angle_comm
angle_eq_iff_oangle_eq_of_sign_eq
Real.Angle.sign_neg
angle_eq_iff_oangle_eq_of_sign_eq πŸ“–mathematicalReal.Angle.sign
oangle
InnerProductGeometry.angleβ€”Real.instIsStrictOrderedRing
oangle_eq_of_angle_eq_of_sign_eq
angle_eq_abs_oangle_toReal
angle_eq_iff_oangle_eq_or_sameRay πŸ“–mathematicalβ€”InnerProductGeometry.angle
oangle
SameRay
Real
Real.instCommSemiring
Real.partialOrder
Real.instIsStrictOrderedRing
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
InnerProductGeometry.angle_zero_right
InnerProductGeometry.angle_zero_left
oangle.congr_simp
oangle_zero_right
oangle_zero_left
SameRay.exists_pos_left
InnerProductGeometry.angle_smul_right_of_pos
InnerProductGeometry.angle_comm
oangle_smul_right_of_pos
angle_eq_iff_oangle_eq_of_sign_eq
oangle_eq_zero_iff_sameRay
oangle_add
angle_eq_iff_oangle_eq_neg_of_sign_eq_neg
neg_add_cancel
eq_zero_or_angle_eq_zero_or_pi_of_sign_oangle_eq_zero
InnerProductGeometry.angle_eq_zero_iff
oangle_self
Real.Angle.sign_zero
InnerProductGeometry.angle_eq_pi_iff
oangle_smul_right_of_neg
oangle_neg_self_right
Real.Angle.sign_coe_pi
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
Real.instIsDomain
GroupWithZero.toNoZeroSMulDivisors
IsDomain.toIsCancelMulZero
continuousAt_oangle πŸ“–mathematicalβ€”ContinuousAt
Real.Angle
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
oangle
β€”Real.instIsStrictOrderedRing
ContinuousAt.comp
Complex.continuousAt_arg_coe_angle
kahler_ne_zero
Continuous.continuousAt
SeminormedAddCommGroup.toIsTopologicalAddGroup
IsTopologicalAddGroup.toContinuousAdd
smulCommClass_self
UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
NormedSpace.toIsBoundedSMul
Continuous.add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Continuous.comp
Complex.continuous_ofReal
continuous_inner
Continuous.mul
IsTopologicalSemiring.toContinuousMul
ContinuousLinearMap.continuousβ‚‚
continuous_const
cos_oangle_eq_cos_angle πŸ“–mathematicalβ€”Real.Angle.cos
oangle
Real.cos
InnerProductGeometry.angle
β€”Real.instIsStrictOrderedRing
cos_oangle_eq_inner_div_norm_mul_norm
InnerProductGeometry.cos_angle
cos_oangle_eq_inner_div_norm_mul_norm πŸ“–mathematicalβ€”Real.Angle.cos
oangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instMul
Norm.norm
NormedAddCommGroup.toNorm
β€”Real.instIsStrictOrderedRing
inner_eq_norm_mul_norm_mul_cos_oangle
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
norm_pos_iff
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
eq_iff_norm_eq_and_oangle_eq_zero πŸ“–mathematicalβ€”Norm.norm
NormedAddCommGroup.toNorm
oangle
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
oangle_eq_zero_iff_sameRay
SameRay.refl
eq_or_ne
norm_zero
SameRay.exists_nonneg_right
one_smul
mul_right_cancelβ‚€
IsCancelMulZero.toIsRightCancelMulZero
IsDomain.toIsCancelMulZero
Real.instIsDomain
one_mul
norm_smul
NormedSpace.toNormSMulClass
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
eq_iff_norm_eq_of_oangle_eq_zero πŸ“–mathematicaloangle
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Norm.norm
NormedAddCommGroup.toNorm
β€”Real.instIsStrictOrderedRing
eq_iff_norm_eq_and_oangle_eq_zero
eq_iff_oangle_eq_zero_of_norm_eq πŸ“–mathematicalNorm.norm
NormedAddCommGroup.toNorm
oangle
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
eq_iff_norm_eq_and_oangle_eq_zero
eq_zero_or_angle_eq_zero_or_pi_of_sign_oangle_eq_zero πŸ“–mathematicalReal.Angle.sign
oangle
SignType
SignType.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
InnerProductGeometry.angle
Real
Real.instZero
Real.pi
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
InnerProductGeometry.angle_zero_left
RCLike.charZero_rclike
InnerProductGeometry.angle_zero_right
angle_eq_abs_oangle_toReal
Real.Angle.sign_eq_zero_iff
Real.Angle.toReal_zero
abs_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.Angle.toReal_pi
covariant_swap_add_of_covariant_add
LT.lt.le
Real.pi_pos
eq_zero_or_oangle_eq_iff_inner_eq_zero πŸ“–mathematicalβ€”NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
oangle
Real.Angle.coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instNeg
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
oangle.congr_simp
oangle_zero_left
inner_zero_left
oangle_zero_right
inner_zero_right
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
angle_eq_abs_oangle_toReal
Real.Angle.abs_toReal_eq_pi_div_two_iff
neg_div
oangle_eq_angle_or_eq_neg_angle
inner_eq_norm_mul_norm_mul_cos_oangle πŸ“–mathematicalβ€”Inner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instMul
Norm.norm
NormedAddCommGroup.toNorm
Real.Angle.cos
oangle
β€”Real.instIsStrictOrderedRing
inner_zero_left
norm_zero
MulZeroClass.zero_mul
oangle.congr_simp
oangle_zero_left
Real.Angle.cos_zero
mul_one
inner_zero_right
MulZeroClass.mul_zero
oangle_zero_right
oangle.eq_1
Real.Angle.cos_coe
Complex.cos_arg
kahler_ne_zero
smulCommClass_self
norm_kahler
Algebra.to_smulCommClass
sub_self
add_zero
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
norm_pos_iff
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
inner_eq_zero_of_oangle_eq_neg_pi_div_two πŸ“–mathematicaloangle
Real.Angle.coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
eq_zero_or_oangle_eq_iff_inner_eq_zero
inner_eq_zero_of_oangle_eq_pi_div_two πŸ“–mathematicaloangle
Real.Angle.coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
eq_zero_or_oangle_eq_iff_inner_eq_zero
inner_rev_eq_zero_of_oangle_eq_neg_pi_div_two πŸ“–mathematicaloangle
Real.Angle.coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
real_inner_comm
inner_eq_zero_of_oangle_eq_neg_pi_div_two
inner_rev_eq_zero_of_oangle_eq_pi_div_two πŸ“–mathematicaloangle
Real.Angle.coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
real_inner_comm
inner_eq_zero_of_oangle_eq_pi_div_two
left_ne_zero_of_oangle_eq_neg_pi_div_two πŸ“–β€”oangle
Real.Angle.coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
left_ne_zero_of_oangle_ne_zero
Real.Angle.neg_pi_div_two_ne_zero
left_ne_zero_of_oangle_eq_pi πŸ“–β€”oangle
Real.Angle.coe
Real.pi
β€”β€”Real.instIsStrictOrderedRing
left_ne_zero_of_oangle_ne_zero
Real.Angle.pi_ne_zero
left_ne_zero_of_oangle_eq_pi_div_two πŸ“–β€”oangle
Real.Angle.coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
left_ne_zero_of_oangle_ne_zero
Real.Angle.pi_div_two_ne_zero
left_ne_zero_of_oangle_ne_zero πŸ“–β€”β€”β€”β€”Real.instIsStrictOrderedRing
oangle_zero_left
left_ne_zero_of_oangle_sign_eq_neg_one πŸ“–β€”Real.Angle.sign
oangle
SignType
SignType.instNeg
SignType.instOne
β€”β€”Real.instIsStrictOrderedRing
left_ne_zero_of_oangle_sign_ne_zero
left_ne_zero_of_oangle_sign_eq_one πŸ“–β€”Real.Angle.sign
oangle
SignType
SignType.instOne
β€”β€”Real.instIsStrictOrderedRing
left_ne_zero_of_oangle_sign_ne_zero
left_ne_zero_of_oangle_sign_ne_zero πŸ“–β€”β€”β€”β€”Real.instIsStrictOrderedRing
left_ne_zero_of_oangle_ne_zero
Real.Angle.sign_ne_zero_iff
ne_of_oangle_eq_neg_pi_div_two πŸ“–β€”oangle
Real.Angle.coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
ne_of_oangle_ne_zero
Real.Angle.neg_pi_div_two_ne_zero
ne_of_oangle_eq_pi πŸ“–β€”oangle
Real.Angle.coe
Real.pi
β€”β€”Real.instIsStrictOrderedRing
ne_of_oangle_ne_zero
Real.Angle.pi_ne_zero
ne_of_oangle_eq_pi_div_two πŸ“–β€”oangle
Real.Angle.coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
ne_of_oangle_ne_zero
Real.Angle.pi_div_two_ne_zero
ne_of_oangle_ne_zero πŸ“–β€”β€”β€”β€”Real.instIsStrictOrderedRing
oangle_self
ne_of_oangle_sign_eq_neg_one πŸ“–β€”Real.Angle.sign
oangle
SignType
SignType.instNeg
SignType.instOne
β€”β€”Real.instIsStrictOrderedRing
ne_of_oangle_sign_ne_zero
ne_of_oangle_sign_eq_one πŸ“–β€”Real.Angle.sign
oangle
SignType
SignType.instOne
β€”β€”Real.instIsStrictOrderedRing
ne_of_oangle_sign_ne_zero
ne_of_oangle_sign_ne_zero πŸ“–β€”β€”β€”β€”Real.instIsStrictOrderedRing
ne_of_oangle_ne_zero
Real.Angle.sign_ne_zero_iff
oangle_add πŸ“–mathematicalβ€”Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
oangle
β€”Real.instIsStrictOrderedRing
Complex.arg_mul_coe_angle
kahler_ne_zero
smulCommClass_self
kahler_mul
Complex.arg_real_mul
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
norm_pos_iff
oangle_add_cyc3 πŸ“–mathematicalβ€”Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
oangle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Real.instIsStrictOrderedRing
oangle_add
oangle_add_oangle_rev
oangle_add_cyc3_neg_left πŸ“–mathematicalβ€”Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.Angle.coe
Real.pi
β€”Real.instIsStrictOrderedRing
oangle_neg_left
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Tactic.Abel.const_add_termg
add_zero
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
oangle_add_cyc3
Real.Angle.coe_pi_add_coe_pi
oangle_add_cyc3_neg_right πŸ“–mathematicalβ€”Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.Angle.coe
Real.pi
β€”Real.instIsStrictOrderedRing
oangle_add_cyc3_neg_left
oangle_add_oangle_rev πŸ“–mathematicalβ€”Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
oangle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Real.instIsStrictOrderedRing
oangle_rev
neg_add_cancel
oangle_add_oangle_rev_neg_left πŸ“–mathematicalβ€”Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NegZeroClass.toZero
β€”Real.instIsStrictOrderedRing
oangle_neg_left_eq_neg_right
oangle_rev
neg_add_cancel
oangle_add_oangle_rev_neg_right πŸ“–mathematicalβ€”Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NegZeroClass.toZero
β€”Real.instIsStrictOrderedRing
oangle_rev
oangle_neg_left_eq_neg_right
add_neg_cancel
oangle_add_swap πŸ“–mathematicalβ€”Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
oangle
β€”Real.instIsStrictOrderedRing
add_comm
oangle_add
oangle_eq_angle_of_sign_eq_one πŸ“–mathematicalReal.Angle.sign
oangle
SignType
SignType.instOne
Real.Angle.coe
InnerProductGeometry.angle
β€”Real.instIsStrictOrderedRing
oangle.congr_simp
oangle_zero_left
Real.Angle.sign_zero
NeZero.one
GroupWithZero.toNontrivial
oangle_zero_right
oangle_eq_angle_or_eq_neg_angle
not_le
SignType.neg_iff
neg_eq_iff_eq_neg
Real.Angle.sign_neg
Real.Angle.sign_coe_nonneg_of_nonneg_of_le_pi
InnerProductGeometry.angle_nonneg
InnerProductGeometry.angle_le_pi
oangle_eq_angle_or_eq_neg_angle πŸ“–mathematicalβ€”oangle
Real.Angle.coe
InnerProductGeometry.angle
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
Real.Angle.cos_eq_real_cos_iff_eq_or_eq_neg
cos_oangle_eq_cos_angle
oangle_eq_neg_angle_of_sign_eq_neg_one πŸ“–mathematicalReal.Angle.sign
oangle
SignType
SignType.instNeg
SignType.instOne
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Real.Angle.coe
InnerProductGeometry.angle
β€”Real.instIsStrictOrderedRing
oangle.congr_simp
oangle_zero_left
Real.Angle.sign_zero
oangle_zero_right
oangle_eq_angle_or_eq_neg_angle
not_le
SignType.neg_iff
Real.Angle.sign_coe_nonneg_of_nonneg_of_le_pi
InnerProductGeometry.angle_nonneg
InnerProductGeometry.angle_le_pi
oangle_eq_neg_of_angle_eq_of_sign_eq_neg πŸ“–mathematicalInnerProductGeometry.angle
Real.Angle.sign
oangle
SignType
SignType.instNeg
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
oangle_rev
oangle_eq_of_angle_eq_of_sign_eq
InnerProductGeometry.angle_comm
Real.Angle.sign_neg
oangle_eq_of_angle_eq_of_sign_eq πŸ“–β€”InnerProductGeometry.angle
Real.Angle.sign
oangle
β€”β€”Real.instIsStrictOrderedRing
oangle_zero_left
Real.Angle.sign_zero
oangle_zero_right
Nat.instAtLeastTwoHAddOfNat
InnerProductGeometry.angle_zero_left
InnerProductGeometry.angle_zero_right
LT.lt.ne
Real.pi_pos
add_sub_cancel_right
mul_two
sub_eq_zero
div_eq_iff
two_ne_zero
CharZero.NeZero.two
RCLike.charZero_rclike
eq_zero_or_angle_eq_zero_or_pi_of_sign_oangle_eq_zero
oangle.congr_simp
Real.Angle.eq_iff_abs_toReal_eq_of_sign_eq
angle_eq_abs_oangle_toReal
oangle_eq_pi_iff_angle_eq_pi πŸ“–mathematicalβ€”oangle
Real.Angle.coe
Real.pi
InnerProductGeometry.angle
β€”Real.instIsStrictOrderedRing
oangle.congr_simp
oangle_zero_left
Real.Angle.pi_ne_zero
Nat.instAtLeastTwoHAddOfNat
InnerProductGeometry.angle_zero_left
div_eq_mul_inv
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Real.instIsDomain
RCLike.charZero_rclike
oangle_zero_right
InnerProductGeometry.angle_zero_right
angle_eq_abs_oangle_toReal
Real.Angle.toReal_pi
Real.instIsOrderedAddMonoid
LT.lt.le
Real.pi_pos
oangle_eq_angle_or_eq_neg_angle
Real.Angle.neg_coe_pi
oangle_eq_pi_iff_oangle_rev_eq_pi πŸ“–mathematicalβ€”oangle
Real.Angle.coe
Real.pi
β€”Real.instIsStrictOrderedRing
oangle_rev
neg_eq_iff_eq_neg
Real.Angle.neg_coe_pi
oangle_eq_pi_iff_sameRay_neg πŸ“–mathematicalβ€”oangle
Real.Angle.coe
Real.pi
SameRay
Real
Real.instCommSemiring
Real.partialOrder
Real.instIsStrictOrderedRing
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Real.instIsStrictOrderedRing
oangle_eq_zero_iff_sameRay
oangle.congr_simp
oangle_zero_left
Real.Angle.pi_ne_zero
oangle_zero_right
oangle_neg_right
Real.Angle.coe_pi_add_coe_pi
sub_eq_zero
Real.Angle.sub_coe_pi_eq_add_coe_pi
oangle_eq_pi_sub_two_zsmul_oangle_sub_of_norm_eq πŸ“–mathematicalNorm.norm
NormedAddCommGroup.toNorm
oangle
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
Real.Angle.coe
Real.pi
SubNegMonoid.toZSMul
β€”Real.instIsStrictOrderedRing
two_zsmul
oangle_sub_eq_oangle_sub_rev_of_norm_eq
eq_sub_iff_add_eq
oangle_neg_neg
add_assoc
norm_eq_zero
norm_zero
norm_ne_zero_iff
oangle.congr_simp
neg_sub
neg_neg
oangle_add_cyc3_neg_right
neg_ne_zero
sub_ne_zero_of_ne
oangle_eq_zero_iff_angle_eq_zero πŸ“–mathematicalβ€”oangle
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
InnerProductGeometry.angle
Real
Real.instZero
β€”Real.instIsStrictOrderedRing
angle_eq_abs_oangle_toReal
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
oangle_eq_angle_or_eq_neg_angle
neg_zero
oangle_eq_zero_iff_oangle_rev_eq_zero πŸ“–mathematicalβ€”oangle
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
oangle_rev
neg_eq_zero
oangle_eq_zero_iff_sameRay πŸ“–mathematicalβ€”oangle
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
SameRay
Real
Real.instCommSemiring
Real.partialOrder
Real.instIsStrictOrderedRing
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”Real.instIsStrictOrderedRing
oangle.eq_1
Algebra.to_smulCommClass
smulCommClass_self
kahler_apply_apply
Complex.arg_coe_angle_eq_iff_eq_toReal
Real.Angle.toReal_zero
Complex.arg_eq_zero_iff
MulZeroClass.mul_zero
mul_one
sub_self
add_zero
zero_add
nonneg_inner_and_areaForm_eq_zero_iff_sameRay
oangle_eq_zero_or_eq_pi_iff_not_linearIndependent πŸ“–mathematicalβ€”oangle
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Real.Angle.coe
Real.pi
LinearIndependent
Real
Matrix.vecCons
Matrix.vecEmpty
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”Real.instIsStrictOrderedRing
oangle_eq_zero_iff_sameRay
oangle_eq_pi_iff_sameRay_neg
sameRay_or_ne_zero_and_sameRay_neg_iff_not_linearIndependent
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
Real.instIsDomain
GroupWithZero.toNoZeroSMulDivisors
oangle_eq_zero_or_eq_pi_iff_right_eq_smul πŸ“–mathematicalβ€”oangle
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Real.Angle.coe
Real.pi
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”Real.instIsStrictOrderedRing
oangle_eq_zero_iff_sameRay
oangle_eq_pi_iff_sameRay_neg
smul_zero
SameRay.exists_nonneg_left
neg_smul
neg_neg
SameRay.congr_simp
neg_zero
lt_trichotomy
smul_ne_zero
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
Real.instIsDomain
GroupWithZero.toNoZeroSMulDivisors
IsDomain.toIsCancelMulZero
LT.lt.ne
SameRay.sameRay_pos_smul_right
PosSMulMono.toSMulPosMono
Real.instIsOrderedRing
Real.instIsOrderedAddMonoid
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
IsScalarTower.left
Left.neg_pos_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
zero_smul
oangle_map πŸ“–mathematicalβ€”oangle
DFunLike.coe
Equiv
Orientation
Real
Real.instCommSemiring
Real.partialOrder
Real.instIsStrictOrderedRing
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
EquivLike.toFunLike
Equiv.instEquivLike
map
LinearIsometryEquiv.toLinearEquiv
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
LinearIsometryEquiv
LinearIsometryEquiv.instEquivLike
LinearIsometryEquiv.symm
β€”Real.instIsStrictOrderedRing
RingHomInvPair.ids
smulCommClass_self
kahler_map
oangle_map_complex πŸ“–mathematicalDFunLike.coe
Equiv
Orientation
Real
Real.instCommSemiring
Real.partialOrder
Real.instIsStrictOrderedRing
AddCommGroup.toAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
Complex
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
Complex.instNormedField
instInnerProductSpaceRealComplex
EquivLike.toFunLike
Equiv.instEquivLike
map
LinearIsometryEquiv.toLinearEquiv
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
Complex.orientation
oangle
Real.Angle.coe
Complex.arg
Complex.instMul
RingHom
CommSemiring.toSemiring
Complex.instCommSemiring
RingHom.instFunLike
starRingEnd
Complex.instStarRing
LinearIsometryEquiv
LinearIsometryEquiv.instEquivLike
β€”Real.instIsStrictOrderedRing
RingHomInvPair.ids
Complex.finrank_real_complex_fact
Complex.oangle
oangle_map
LinearIsometryEquiv.symm_apply_apply
oangle_ne_zero_and_ne_pi_iff_linearIndependent πŸ“–mathematicalβ€”LinearIndependent
Real
Matrix.vecCons
Matrix.vecEmpty
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”Real.instIsStrictOrderedRing
Mathlib.Tactic.Contrapose.contrapose_iff₁
Mathlib.Tactic.Push.not_and_or_eq
oangle_eq_zero_or_eq_pi_iff_not_linearIndependent
oangle_neg_left πŸ“–mathematicalβ€”oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.Angle.coe
Real.pi
β€”Real.instIsStrictOrderedRing
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Complex.arg_neg_coe_angle
kahler_ne_zero
oangle_neg_left_eq_neg_right πŸ“–mathematicalβ€”oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Real.instIsStrictOrderedRing
neg_neg
oangle_neg_neg
oangle_neg_neg πŸ“–mathematicalβ€”oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Real.instIsStrictOrderedRing
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
neg_neg
oangle_neg_orientation_eq_neg πŸ“–mathematicalβ€”oangle
Orientation
Real
Real.instCommSemiring
Real.partialOrder
Real.instIsStrictOrderedRing
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
instNegRay
Real.commRing
AlternatingMap
CommSemiring.toSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
AlternatingMap.instAddCommGroup
Real.instAddCommGroup
AlternatingMap.instModule
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
smulCommClass_self
kahler_neg_orientation
Complex.arg_conj_coe_angle
oangle_neg_right πŸ“–mathematicalβ€”oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.Angle.coe
Real.pi
β€”Real.instIsStrictOrderedRing
map_neg
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Complex.arg_neg_coe_angle
kahler_ne_zero
oangle_neg_self_left πŸ“–mathematicalβ€”oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.Angle.coe
Real.pi
β€”Real.instIsStrictOrderedRing
oangle_neg_left
oangle_self
zero_add
oangle_neg_self_right πŸ“–mathematicalβ€”oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.Angle.coe
Real.pi
β€”Real.instIsStrictOrderedRing
oangle_neg_right
oangle_self
zero_add
oangle_rev πŸ“–mathematicalβ€”oangle
Real.Angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
smulCommClass_self
kahler_swap
Complex.arg_conj_coe_angle
oangle_self πŸ“–mathematicalβ€”oangle
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
oangle.eq_1
smulCommClass_self
kahler_apply_self
Complex.ofReal_pow
Nat.instAtLeastTwoHAddOfNat
AddSubgroup.normal_of_comm
Complex.arg_ofReal_of_nonneg
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
even_two_mul
QuotientAddGroup.mk_zero
oangle_sign_add_left πŸ“–mathematicalβ€”Real.Angle.sign
oangle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”Real.instIsStrictOrderedRing
oangle_sign_add_smul_left
one_smul
oangle_sign_add_right πŸ“–mathematicalβ€”Real.Angle.sign
oangle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”Real.instIsStrictOrderedRing
oangle_sign_smul_add_right
one_smul
oangle_sign_add_smul_left πŸ“–mathematicalβ€”Real.Angle.sign
oangle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”Real.instIsStrictOrderedRing
oangle_rev
Real.Angle.sign_neg
oangle.congr_simp
add_comm
oangle_sign_smul_add_right
oangle_sign_neg_left πŸ“–mathematicalβ€”Real.Angle.sign
oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
SignType
SignType.instNeg
β€”Real.instIsStrictOrderedRing
oangle.congr_simp
neg_zero
oangle_zero_left
Real.Angle.sign_zero
oangle_zero_right
oangle_neg_left
Real.Angle.sign_add_pi
oangle_sign_neg_right πŸ“–mathematicalβ€”Real.Angle.sign
oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
SignType
SignType.instNeg
β€”Real.instIsStrictOrderedRing
oangle.congr_simp
oangle_zero_left
Real.Angle.sign_zero
neg_zero
oangle_zero_right
oangle_neg_right
Real.Angle.sign_add_pi
oangle_sign_smul_add_right πŸ“–mathematicalβ€”Real.Angle.sign
oangle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”Real.instIsStrictOrderedRing
Real.Angle.sign_eq_zero_iff
oangle_smul_add_right_eq_zero_or_eq_pi_iff
IsConnected.image
isConnected_univ
PathConnectedSpace.connectedSpace
Real.instPathConnectedSpace
ContinuousOn.prodMk
continuousOn_const
ContinuousOn.fun_add
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
ContinuousOn.smul
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
continuousOn_id'
continuousOn_of_forall_continuousAt
continuousAt_oangle
oangle.congr_simp
smul_zero
zero_add
oangle_zero_left
oangle_zero_right
zero_smul
Set.mem_image_of_mem
Set.mem_univ
Real.Angle.sign_eq_of_continuousOn
oangle_sign_smul_add_smul_left πŸ“–mathematicalβ€”Real.Angle.sign
oangle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
SignType
SignType.instMul
DFunLike.coe
OrderHom
Real.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
Real.instZero
Real.decidableLT
β€”Real.instIsStrictOrderedRing
oangle_rev
Real.Angle.sign_neg
oangle.congr_simp
add_comm
oangle_sign_smul_add_smul_right
mul_neg
oangle_sign_smul_add_smul_right πŸ“–mathematicalβ€”Real.Angle.sign
oangle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
SignType
SignType.instMul
DFunLike.coe
OrderHom
Real.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
Real.instZero
Real.decidableLT
β€”Real.instIsStrictOrderedRing
oangle_sign_smul_add_right
oangle_sign_smul_right
oangle_sign_smul_add_smul_smul_add_smul πŸ“–mathematicalβ€”Real.Angle.sign
oangle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
SignType
SignType.instMul
DFunLike.coe
OrderHom
Real.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
Real.instZero
Real.decidableLT
Real.instSub
Real.instMul
β€”Real.instIsStrictOrderedRing
zero_smul
MulZeroClass.zero_mul
zero_add
zero_sub
Left.sign_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
oangle_sign_smul_left
add_comm
oangle_sign_smul_add_smul_right
oangle_rev
Real.Angle.sign_neg
sign_mul
mul_neg
neg_mul
mul_assoc
oangle_sign_smul_add_right
smul_add
smul_smul
div_mul_cancelβ‚€
neg_smul
add_assoc
sub_eq_add_neg
sub_add_cancel
add_smul
oangle_sign_smul_right
oangle_sign_smul_add_smul_left
add_mul
Distrib.rightDistribClass
mul_comm
oangle_sign_smul_left πŸ“–mathematicalβ€”Real.Angle.sign
oangle
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
SignType
SignType.instMul
DFunLike.coe
OrderHom
Real.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
Real.instZero
Real.decidableLT
β€”Real.instIsStrictOrderedRing
lt_trichotomy
oangle_smul_left_of_neg
oangle_sign_neg_left
sign_neg
neg_mul
one_mul
oangle.congr_simp
zero_smul
oangle_zero_left
Real.Angle.sign_zero
sign_zero
MulZeroClass.zero_mul
oangle_smul_left_of_pos
sign_pos
oangle_sign_smul_right πŸ“–mathematicalβ€”Real.Angle.sign
oangle
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
SignType
SignType.instMul
DFunLike.coe
OrderHom
Real.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SignType.instLinearOrder
OrderHom.instFunLike
SignType.sign
Real.instZero
Real.decidableLT
β€”Real.instIsStrictOrderedRing
lt_trichotomy
oangle_smul_right_of_neg
oangle_sign_neg_right
sign_neg
neg_mul
one_mul
oangle.congr_simp
zero_smul
oangle_zero_right
Real.Angle.sign_zero
sign_zero
MulZeroClass.zero_mul
oangle_smul_right_of_pos
sign_pos
oangle_sign_smul_sub_left πŸ“–mathematicalβ€”Real.Angle.sign
oangle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
SignType
SignType.instNeg
β€”Real.instIsStrictOrderedRing
oangle_sign_neg_left
sub_eq_neg_add
oangle_sign_add_smul_left
oangle_sign_smul_sub_right πŸ“–mathematicalβ€”Real.Angle.sign
oangle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
SignType
SignType.instNeg
β€”Real.instIsStrictOrderedRing
oangle_sign_neg_right
sub_eq_add_neg
oangle_sign_smul_add_right
oangle_sign_sub_left πŸ“–mathematicalβ€”Real.Angle.sign
oangle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Real.instIsStrictOrderedRing
oangle_sign_sub_smul_left
one_smul
oangle_sign_sub_left_eq_neg πŸ“–mathematicalβ€”Real.Angle.sign
oangle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
SignType
SignType.instNeg
β€”Real.instIsStrictOrderedRing
oangle_sign_smul_sub_left
one_smul
oangle_sign_sub_left_swap πŸ“–mathematicalβ€”Real.Angle.sign
oangle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Real.instIsStrictOrderedRing
oangle_sign_sub_left_eq_neg
oangle_rev
Real.Angle.sign_neg
oangle_sign_sub_right πŸ“–mathematicalβ€”Real.Angle.sign
oangle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Real.instIsStrictOrderedRing
oangle_sign_sub_smul_right
one_smul
oangle_sign_sub_right_eq_neg πŸ“–mathematicalβ€”Real.Angle.sign
oangle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
SignType
SignType.instNeg
β€”Real.instIsStrictOrderedRing
oangle_sign_smul_sub_right
one_smul
oangle_sign_sub_right_swap πŸ“–mathematicalβ€”Real.Angle.sign
oangle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Real.instIsStrictOrderedRing
oangle_sign_sub_right_eq_neg
oangle_rev
Real.Angle.sign_neg
oangle_sign_sub_smul_left πŸ“–mathematicalβ€”Real.Angle.sign
oangle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”Real.instIsStrictOrderedRing
sub_eq_add_neg
neg_smul
oangle_sign_add_smul_left
oangle_sign_sub_smul_right πŸ“–mathematicalβ€”Real.Angle.sign
oangle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”Real.instIsStrictOrderedRing
sub_eq_add_neg
neg_smul
add_comm
oangle_sign_smul_add_right
oangle_smul_add_right_eq_zero_or_eq_pi_iff πŸ“–mathematicalβ€”oangle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
Real.Angle.coe
Real.pi
β€”Real.instIsStrictOrderedRing
Fin.sum_univ_two
add_smul
add_assoc
smul_smul
smul_add
not_and_or
add_zero
MulZeroClass.zero_mul
sub_smul
sub_add_cancel
sub_zero
oangle_smul_left_of_neg πŸ“–mathematicalReal
Real.instLT
Real.instZero
oangle
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Real.instIsStrictOrderedRing
neg_neg
neg_smul
smul_neg
oangle_smul_left_of_pos
neg_pos_of_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
oangle_smul_left_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
oangle
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”Real.instIsStrictOrderedRing
smulCommClass_self
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
Complex.arg_real_mul
oangle_smul_left_self_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
oangle
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
LE.le.lt_or_eq
oangle_smul_left_of_pos
oangle_self
oangle.congr_simp
zero_smul
oangle_zero_left
oangle_smul_right_of_neg πŸ“–mathematicalReal
Real.instLT
Real.instZero
oangle
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Real.instIsStrictOrderedRing
neg_neg
neg_smul
smul_neg
oangle_smul_right_of_pos
neg_pos_of_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
oangle_smul_right_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
oangle
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”Real.instIsStrictOrderedRing
map_smul
SemilinearMapClass.toMulActionSemiHomClass
LinearMap.semilinearMapClass
Complex.arg_real_mul
oangle_smul_right_self_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
oangle
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
LE.le.lt_or_eq
oangle_smul_right_of_pos
oangle_self
oangle.congr_simp
zero_smul
oangle_zero_right
oangle_smul_smul_self_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
oangle
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
Real.Angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
LE.le.lt_or_eq
oangle_smul_left_of_pos
oangle_smul_right_self_of_nonneg
oangle.congr_simp
zero_smul
oangle_zero_left
oangle_sub_eq_oangle_sub_rev_of_norm_eq πŸ“–mathematicalNorm.norm
NormedAddCommGroup.toNorm
oangle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”Real.instIsStrictOrderedRing
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
smulCommClass_self
kahler_apply_self
oangle_sub_left πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
β€”Real.instIsStrictOrderedRing
sub_eq_iff_eq_add
oangle_add_swap
oangle_sub_right πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
β€”Real.instIsStrictOrderedRing
sub_eq_iff_eq_add
oangle_add
oangle_zero_left πŸ“–mathematicalβ€”oangle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.Angle
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Complex.arg_zero
oangle_zero_right πŸ“–mathematicalβ€”oangle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.Angle
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
LinearMap.semilinearMapClass
Complex.arg_zero
right_ne_zero_of_oangle_eq_neg_pi_div_two πŸ“–β€”oangle
Real.Angle.coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
right_ne_zero_of_oangle_ne_zero
Real.Angle.neg_pi_div_two_ne_zero
right_ne_zero_of_oangle_eq_pi πŸ“–β€”oangle
Real.Angle.coe
Real.pi
β€”β€”Real.instIsStrictOrderedRing
right_ne_zero_of_oangle_ne_zero
Real.Angle.pi_ne_zero
right_ne_zero_of_oangle_eq_pi_div_two πŸ“–β€”oangle
Real.Angle.coe
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
right_ne_zero_of_oangle_ne_zero
Real.Angle.pi_div_two_ne_zero
right_ne_zero_of_oangle_ne_zero πŸ“–β€”β€”β€”β€”Real.instIsStrictOrderedRing
oangle_zero_right
right_ne_zero_of_oangle_sign_eq_neg_one πŸ“–β€”Real.Angle.sign
oangle
SignType
SignType.instNeg
SignType.instOne
β€”β€”Real.instIsStrictOrderedRing
right_ne_zero_of_oangle_sign_ne_zero
right_ne_zero_of_oangle_sign_eq_one πŸ“–β€”Real.Angle.sign
oangle
SignType
SignType.instOne
β€”β€”Real.instIsStrictOrderedRing
right_ne_zero_of_oangle_sign_ne_zero
right_ne_zero_of_oangle_sign_ne_zero πŸ“–β€”β€”β€”β€”Real.instIsStrictOrderedRing
right_ne_zero_of_oangle_ne_zero
Real.Angle.sign_ne_zero_iff
two_zsmul_oangle_left_of_span_eq πŸ“–mathematicalSubmodule.span
Real
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
Set
Set.instSingletonSet
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
β€”Real.instIsStrictOrderedRing
Submodule.span_singleton_eq_span_singleton
Real.instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
two_zsmul_oangle_smul_left_of_ne_zero
Units.ne_zero
Real.instNontrivial
two_zsmul_oangle_neg_left πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Real.instIsStrictOrderedRing
oangle.congr_simp
neg_zero
oangle_zero_left
smul_zero
oangle_zero_right
oangle_neg_left
smul_add
Real.Angle.two_zsmul_coe_pi
add_zero
two_zsmul_oangle_neg_right πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Real.instIsStrictOrderedRing
oangle.congr_simp
oangle_zero_left
smul_zero
neg_zero
oangle_zero_right
oangle_neg_right
smul_add
Real.Angle.two_zsmul_coe_pi
add_zero
two_zsmul_oangle_neg_self_left πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NegZeroClass.toZero
β€”Real.instIsStrictOrderedRing
oangle.congr_simp
neg_zero
oangle_self
smul_zero
oangle_neg_self_left
Real.Angle.two_zsmul_coe_pi
two_zsmul_oangle_neg_self_right πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
NegZeroClass.toZero
β€”Real.instIsStrictOrderedRing
oangle.congr_simp
neg_zero
oangle_self
smul_zero
oangle_neg_self_right
Real.Angle.two_zsmul_coe_pi
two_zsmul_oangle_of_span_eq_of_span_eq πŸ“–mathematicalSubmodule.span
Real
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
Set
Set.instSingletonSet
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
β€”Real.instIsStrictOrderedRing
two_zsmul_oangle_left_of_span_eq
two_zsmul_oangle_right_of_span_eq
two_zsmul_oangle_right_of_span_eq πŸ“–mathematicalSubmodule.span
Real
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
Set
Set.instSingletonSet
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
β€”Real.instIsStrictOrderedRing
Submodule.span_singleton_eq_span_singleton
Real.instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
two_zsmul_oangle_smul_right_of_ne_zero
Units.ne_zero
Real.instNontrivial
two_zsmul_oangle_smul_left_of_ne_zero πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”Real.instIsStrictOrderedRing
Ne.lt_or_gt
oangle_smul_left_of_neg
two_zsmul_oangle_neg_left
oangle_smul_left_of_pos
two_zsmul_oangle_smul_left_self πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Real.instIsStrictOrderedRing
lt_or_ge
oangle_smul_left_of_neg
two_zsmul_oangle_neg_left
oangle_self
smul_zero
oangle_smul_left_self_of_nonneg
two_zsmul_oangle_smul_right_of_ne_zero πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”Real.instIsStrictOrderedRing
Ne.lt_or_gt
oangle_smul_right_of_neg
two_zsmul_oangle_neg_right
oangle_smul_right_of_pos
two_zsmul_oangle_smul_right_self πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Real.instIsStrictOrderedRing
lt_or_ge
oangle_smul_right_of_neg
two_zsmul_oangle_neg_right
oangle_self
smul_zero
oangle_smul_right_self_of_nonneg
two_zsmul_oangle_smul_smul_self πŸ“–mathematicalβ€”Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”Real.instIsStrictOrderedRing
oangle.congr_simp
zero_smul
oangle_zero_left
smul_zero
two_zsmul_oangle_smul_left_of_ne_zero
two_zsmul_oangle_smul_right_self

---

← Back to Index