Documentation Verification Report

Sphere

πŸ“ Source: Mathlib/Geometry/Euclidean/Angle/Sphere.lean

Statistics

MetricCount
Definitions0
Theoremscircumsphere_eq_circumsphere_of_eq_of_eq_of_two_zsmul_oangle_eq, circumsphere_eq_of_dist_of_oangle, dist_div_sin_angle_div_two_eq_circumradius, dist_div_sin_angle_eq_two_mul_circumradius, dist_div_sin_oangle_div_two_eq_circumradius, dist_div_sin_oangle_eq_two_mul_circumradius, inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_circumcenter, mem_circumsphere_of_two_zsmul_oangle_eq, two_zsmul_oangle_eq, angle_eq_pi_div_two, IsTangentAt_iff_angle_eq_pi_div_two, IsTangentAt_of_angle_eq_pi_div_two, abs_oangle_center_left_toReal_lt_pi_div_two, abs_oangle_center_right_toReal_lt_pi_div_two, angle_eq_pi_div_two_iff_mem_sphere_ofDiameter, angle_eq_pi_div_two_iff_mem_sphere_of_isDiameter, dist_div_cos_oangle_center_div_two_eq_radius, dist_div_cos_oangle_center_eq_two_mul_radius, dist_div_sin_oangle_div_two_eq_radius, dist_div_sin_oangle_eq_two_mul_radius, inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, isDiameter_of_angle_eq_pi_div_two, oangle_center_eq_two_zsmul_oangle, oangle_eq_pi_sub_two_zsmul_oangle_center_left, oangle_eq_pi_sub_two_zsmul_oangle_center_right, tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center, thales_theorem, two_zsmul_oangle_center_add_two_zsmul_oangle_eq_pi, two_zsmul_oangle_eq, concyclic_of_two_zsmul_oangle_eq_of_not_collinear, concyclic_or_collinear_of_two_zsmul_oangle_eq, cospherical_of_two_zsmul_oangle_eq_of_not_collinear, cospherical_or_collinear_of_two_zsmul_oangle_eq, oangle_eq_two_zsmul_oangle_sub_of_norm_eq, oangle_eq_two_zsmul_oangle_sub_of_norm_eq_real, two_zsmul_oangle_sub_eq_two_zsmul_oangle_sub_of_norm_eq
36
Total36

Affine.Triangle

Theorems

NameKindAssumesProvesValidatesDepends On
circumsphere_eq_circumsphere_of_eq_of_eq_of_two_zsmul_oangle_eq πŸ“–mathematicalAffine.Simplex.points
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
EuclideanGeometry.oangle
Affine.Simplex.circumsphereβ€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.ids
RCLike.charZero_rclike
circumsphere_eq_of_dist_of_oangle
Real.Angle.tan_eq_of_two_zsmul_eq
Real.Angle.abs_sin_eq_of_two_zsmul_eq
circumsphere_eq_of_dist_of_oangle πŸ“–mathematicalβ€”Affine.Simplex.circumsphere
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instInv
Real.Angle.tan
EuclideanGeometry.oangle
Affine.Simplex.points
Real.instRing
NormedAddCommGroup.toAddCommGroup
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
LinearIsometryEquiv.instEquivLike
Orientation.rotation
EuclideanGeometry.o
Real.instCommSemiring
Real.partialOrder
Real.instIsStrictOrderedRing
Real.Angle.coe
Real.pi
VSub.vsub
AddTorsor.toVSub
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
midpoint
invertibleTwo
Semifield.toDivisionSemiring
Field.toSemifield
Real.instField
RCLike.charZero_rclike
Dist.dist
PseudoMetricSpace.toDist
abs
Real.lattice
Real.instAddGroup
Real.Angle.sin
β€”Real.instIsStrictOrderedRing
EuclideanGeometry.Sphere.ext
Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.ids
RCLike.charZero_rclike
inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_circumcenter
dist_div_sin_oangle_div_two_eq_circumradius
dist_div_sin_angle_div_two_eq_circumradius πŸ“–mathematicalβ€”Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Affine.Simplex.points
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
Real.sin
EuclideanGeometry.angle
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Affine.Simplex.circumradius
β€”instNonemptySubtypeMemAffineSubspaceAffineSpanOfElem
Set.instNonemptyRange
le_rfl
direction_affineSpan
AffineIndependent.finrank_vectorSpan
Affine.Simplex.independent
Fintype.card_fin
Real.instIsStrictOrderedRing
commRing_strongRankCondition
Real.instNontrivial
Module.Free.of_divisionRing
finiteDimensional_direction_affineSpan_range
Finite.of_fintype
Fact.out
Nat.instAtLeastTwoHAddOfNat
Real.Angle.sin_toReal
Real.abs_sin_eq_sin_abs_of_abs_le_pi
Real.Angle.abs_toReal_le_pi
EuclideanGeometry.angle_eq_abs_oangle_toReal
AffineIndependent.injective
Affine.Simplex.circumradius_restrict
dist_div_sin_oangle_div_two_eq_circumradius
dist_div_sin_angle_eq_two_mul_circumradius πŸ“–mathematicalβ€”Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Affine.Simplex.points
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
Real.sin
EuclideanGeometry.angle
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Affine.Simplex.circumradius
β€”Nat.instAtLeastTwoHAddOfNat
dist_div_sin_angle_div_two_eq_circumradius
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
dist_div_sin_oangle_div_two_eq_circumradius πŸ“–mathematicalβ€”Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Affine.Simplex.points
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
abs
Real.lattice
Real.instAddGroup
Real.Angle.sin
EuclideanGeometry.oangle
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Affine.Simplex.circumradius
β€”Real.instIsStrictOrderedRing
EuclideanGeometry.Sphere.dist_div_sin_oangle_div_two_eq_radius
Affine.Simplex.mem_circumsphere
AffineIndependent.injective
Real.instNontrivial
Affine.Simplex.independent
dist_div_sin_oangle_eq_two_mul_circumradius πŸ“–mathematicalβ€”Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Affine.Simplex.points
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
abs
Real.lattice
Real.instAddGroup
Real.Angle.sin
EuclideanGeometry.oangle
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Affine.Simplex.circumradius
β€”Real.instIsStrictOrderedRing
EuclideanGeometry.Sphere.dist_div_sin_oangle_eq_two_mul_radius
Affine.Simplex.mem_circumsphere
AffineIndependent.injective
Real.instNontrivial
Affine.Simplex.independent
inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_circumcenter πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instInv
Real.Angle.tan
EuclideanGeometry.oangle
Affine.Simplex.points
Real.instRing
NormedAddCommGroup.toAddCommGroup
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
LinearIsometryEquiv.instEquivLike
Orientation.rotation
EuclideanGeometry.o
Real.instCommSemiring
Real.partialOrder
Real.instIsStrictOrderedRing
Real.Angle.coe
Real.pi
VSub.vsub
AddTorsor.toVSub
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
midpoint
invertibleTwo
Semifield.toDivisionSemiring
Field.toSemifield
Real.instField
RCLike.charZero_rclike
Affine.Simplex.circumcenter
β€”Real.instIsStrictOrderedRing
EuclideanGeometry.Sphere.inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center
Affine.Simplex.mem_circumsphere
AffineIndependent.injective
Real.instNontrivial
Affine.Simplex.independent
mem_circumsphere_of_two_zsmul_oangle_eq πŸ“–mathematicalReal.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
EuclideanGeometry.oangle
Affine.Simplex.points
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
EuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Affine.Simplex.circumsphere
β€”Real.instIsStrictOrderedRing
Function.update_of_ne
Function.update_self
affineIndependent_iff_not_collinear_of_ne
EuclideanGeometry.collinear_iff_of_two_zsmul_oangle_eq
Affine.Simplex.independent
circumsphere_eq_circumsphere_of_eq_of_eq_of_two_zsmul_oangle_eq
Affine.Simplex.mem_circumsphere

EuclideanGeometry

Theorems

NameKindAssumesProvesValidatesDepends On
concyclic_of_two_zsmul_oangle_eq_of_not_collinear πŸ“–mathematicalReal.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
Collinear
Real
Real.instDivisionRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
Set
Set.instInsert
Set.instSingletonSet
Concyclicβ€”Real.instIsStrictOrderedRing
cospherical_of_two_zsmul_oangle_eq_of_not_collinear
coplanar_of_fact_finrank_eq_two
concyclic_or_collinear_of_two_zsmul_oangle_eq πŸ“–mathematicalReal.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
Concyclic
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Set
Set.instInsert
Set.instSingletonSet
Collinear
Real.instDivisionRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
β€”Real.instIsStrictOrderedRing
cospherical_or_collinear_of_two_zsmul_oangle_eq
coplanar_of_fact_finrank_eq_two
cospherical_of_two_zsmul_oangle_eq_of_not_collinear πŸ“–mathematicalReal.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
Collinear
Real
Real.instDivisionRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
Set
Set.instInsert
Set.instSingletonSet
Cosphericalβ€”Real.instIsStrictOrderedRing
collinear_iff_of_two_zsmul_oangle_eq
affineIndependent_iff_not_collinear_set
cospherical_iff_exists_sphere
Affine.Simplex.mem_circumsphere
Affine.Triangle.circumsphere_eq_circumsphere_of_eq_of_eq_of_two_zsmul_oangle_eq
cospherical_or_collinear_of_two_zsmul_oangle_eq πŸ“–mathematicalReal.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
Cospherical
Set
Set.instInsert
Set.instSingletonSet
Collinear
Real
Real.instDivisionRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
β€”Real.instIsStrictOrderedRing
Set.insert_eq_self
Set.mem_insert_of_mem
Set.mem_singleton
affineIndependent_iff_not_collinear_set
cospherical_iff_exists_sphere
Affine.Simplex.mem_circumsphere
collinear_iff_of_two_zsmul_oangle_eq
Set.insert_comm
Collinear.collinear_insert_iff_of_ne
Set.mem_insert
cospherical_of_two_zsmul_oangle_eq_of_not_collinear

EuclideanGeometry.Cospherical

Theorems

NameKindAssumesProvesValidatesDepends On
two_zsmul_oangle_eq πŸ“–mathematicalEuclideanGeometry.Cospherical
Set
Set.instInsert
Set.instSingletonSet
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
EuclideanGeometry.oangle
β€”Real.instIsStrictOrderedRing
EuclideanGeometry.cospherical_iff_exists_sphere
EuclideanGeometry.Sphere.two_zsmul_oangle_eq

EuclideanGeometry.Sphere

Theorems

NameKindAssumesProvesValidatesDepends On
IsTangentAt_iff_angle_eq_pi_div_two πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
IsTangentAt
affineSpan
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
Set
Set.instInsert
Set.instSingletonSet
EuclideanGeometry.angle
center
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
IsTangentAt.angle_eq_pi_div_two
right_mem_affineSpan_pair
IsTangentAt_of_angle_eq_pi_div_two
IsTangentAt_of_angle_eq_pi_div_two πŸ“–mathematicalEuclideanGeometry.angle
center
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
EuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
IsTangentAt
affineSpan
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
Set
Set.instInsert
Set.instSingletonSet
β€”Nat.instAtLeastTwoHAddOfNat
left_mem_affineSpan_pair
neg_eq_zero
inner_neg_right
neg_vsub_eq_vsub_rev
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
EuclideanGeometry.angle.eq_1
affineSpan_le
abs_oangle_center_left_toReal_lt_pi_div_two πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Real
Real.instLT
abs
Real.lattice
Real.instAddGroup
Real.Angle.toReal
EuclideanGeometry.oangle
center
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Real.instIsStrictOrderedRing
EuclideanGeometry.abs_oangle_right_toReal_lt_pi_div_two_of_dist_eq
EuclideanGeometry.dist_center_eq_dist_center_of_mem_sphere'
abs_oangle_center_right_toReal_lt_pi_div_two πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Real
Real.instLT
abs
Real.lattice
Real.instAddGroup
Real.Angle.toReal
EuclideanGeometry.oangle
center
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Real.instIsStrictOrderedRing
EuclideanGeometry.abs_oangle_left_toReal_lt_pi_div_two_of_dist_eq
EuclideanGeometry.dist_center_eq_dist_center_of_mem_sphere'
angle_eq_pi_div_two_iff_mem_sphere_ofDiameter πŸ“–mathematicalβ€”EuclideanGeometry.angle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
EuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
ofDiameter
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
β€”angle_eq_pi_div_two_iff_mem_sphere_of_isDiameter
isDiameter_ofDiameter
angle_eq_pi_div_two_iff_mem_sphere_of_isDiameter πŸ“–mathematicalIsDiameter
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
EuclideanGeometry.angle
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
EuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
β€”Nat.instAtLeastTwoHAddOfNat
EuclideanGeometry.mem_sphere'
EuclideanGeometry.angle.eq_1
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
RCLike.charZero_rclike
IsDiameter.midpoint_eq_center
vsub_add_vsub_cancel
inner_add_left
inner_add_right
left_vsub_midpoint
right_vsub_midpoint
smul_neg
neg_vsub_eq_vsub_rev
inner_neg_left
real_inner_comm
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
mul_one
add_zero
neg_add_eq_zero
real_inner_self_eq_norm_sq
dist_eq_norm_vsub
sq_eq_sqβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
dist_nonneg
EuclideanGeometry.mem_sphere
IsDiameter.right_mem
dist_div_cos_oangle_center_div_two_eq_radius πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Real.Angle.cos
EuclideanGeometry.oangle
center
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
radius
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
div_right_comm
div_eq_mul_inv
mul_comm
RCLike.charZero_rclike
dist_left_midpoint
Real.norm_ofNat
EuclideanGeometry.mem_sphere
RingHomInvPair.ids
tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center
EuclideanGeometry.oangle_midpoint_rev_left
EuclideanGeometry.oangle.eq_1
vadd_vsub_assoc
midpoint_vsub_left
invOf_eq_inv
smul_inv_smulβ‚€
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearIsometryClass.toSemilinearMapClass
SemilinearIsometryEquivClass.toSemilinearIsometryClass
LinearIsometryEquiv.instSemilinearIsometryEquivClass
smul_smul
div_mul_cancelβ‚€
two_ne_zero'
CharZero.NeZero.two
dist_eq_norm_vsub'
add_comm
Orientation.oangle_add_right_smul_rotation_pi_div_two
Real.Angle.cos_coe
Real.cos_arctan
Nat.cast_one
one_div
div_inv_eq_mul
IsStrictOrderedRing.toPosMulStrictMono
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
mul_nonneg
IsOrderedRing.toPosMulMono
norm_nonneg
le_of_lt
Real.sqrt_pos_of_pos
add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
even_two_mul
norm_add_sq_eq_norm_sq_add_norm_sq_real
Orientation.inner_smul_rotation_pi_div_two_right
mul_assoc
Real.mul_self_sqrt
norm_smul
NormedSpace.toNormSMulClass
LinearIsometryEquiv.norm_map
Real.norm_eq_abs
abs_mul_abs_self
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
dist_div_cos_oangle_center_eq_two_mul_radius πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Real.Angle.cos
EuclideanGeometry.oangle
center
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
radius
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
dist_div_cos_oangle_center_div_two_eq_radius
mul_div_cancelβ‚€
two_ne_zero'
CharZero.NeZero.two
RCLike.charZero_rclike
dist_div_sin_oangle_div_two_eq_radius πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
abs
Real.lattice
Real.instAddGroup
Real.Angle.sin
EuclideanGeometry.oangle
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
radius
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
Real.Angle.abs_cos_eq_abs_sin_of_two_zsmul_add_two_zsmul_eq_pi
two_zsmul_oangle_center_add_two_zsmul_oangle_eq_pi
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.Angle.cos_nonneg_iff_abs_toReal_le_pi_div_two
LT.lt.le
abs_oangle_center_right_toReal_lt_pi_div_two
dist_div_cos_oangle_center_div_two_eq_radius
dist_div_sin_oangle_eq_two_mul_radius πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
abs
Real.lattice
Real.instAddGroup
Real.Angle.sin
EuclideanGeometry.oangle
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
radius
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
dist_div_sin_oangle_div_two_eq_radius
mul_div_cancelβ‚€
two_ne_zero'
CharZero.NeZero.two
RCLike.charZero_rclike
inv_tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instInv
Real.Angle.tan
EuclideanGeometry.oangle
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
LinearIsometryEquiv.instEquivLike
Orientation.rotation
EuclideanGeometry.o
Real.instCommSemiring
Real.partialOrder
Real.instIsStrictOrderedRing
Real.Angle.coe
Real.pi
VSub.vsub
AddTorsor.toVSub
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
midpoint
Real.instRing
invertibleTwo
Semifield.toDivisionSemiring
Field.toSemifield
Real.instField
RCLike.charZero_rclike
NormedAddCommGroup.toAddCommGroup
center
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
RingHomInvPair.ids
RCLike.charZero_rclike
Real.Angle.tan_eq_inv_of_two_zsmul_add_two_zsmul_eq_pi
add_comm
two_zsmul_oangle_center_add_two_zsmul_oangle_eq_pi
tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center
isDiameter_of_angle_eq_pi_div_two πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
EuclideanGeometry.angle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
IsDiameter
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
neg_eq_zero
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_eq
Real.instIsOrderedRing
sub_eq_zero_of_eq
EuclideanGeometry.angle_self_of_ne
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.pi_pos
isDiameter_ofDiameter
EuclideanGeometry.eq_of_mem_sphere_of_mem_sphere_of_finrank_eq_two
FiniteDimensional.of_finrank_eq_succ
Fact.out
IsDiameter.left_mem
IsDiameter.right_mem
angle_eq_pi_div_two_iff_mem_sphere_ofDiameter
oangle_center_eq_two_zsmul_oangle πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
EuclideanGeometry.oangle
center
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
β€”Real.instIsStrictOrderedRing
EuclideanGeometry.oangle.eq_1
Orientation.oangle_eq_two_zsmul_oangle_sub_of_norm_eq_real
dist_eq_norm_vsub
EuclideanGeometry.mem_sphere
Orientation.oangle.congr_simp
vsub_sub_vsub_cancel_right
oangle_eq_pi_sub_two_zsmul_oangle_center_left πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
EuclideanGeometry.oangle
center
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
Real.Angle.coe
Real.pi
SubNegMonoid.toZSMul
β€”Real.instIsStrictOrderedRing
EuclideanGeometry.oangle_eq_pi_sub_two_zsmul_oangle_of_dist_eq
EuclideanGeometry.dist_center_eq_dist_center_of_mem_sphere'
oangle_eq_pi_sub_two_zsmul_oangle_center_right πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
EuclideanGeometry.oangle
center
Real.Angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
Real.Angle.coe
Real.pi
SubNegMonoid.toZSMul
β€”Real.instIsStrictOrderedRing
oangle_eq_pi_sub_two_zsmul_oangle_center_left
EuclideanGeometry.oangle_eq_oangle_of_dist_eq
EuclideanGeometry.dist_center_eq_dist_center_of_mem_sphere'
tan_div_two_smul_rotation_pi_div_two_vadd_midpoint_eq_center πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.Angle.tan
EuclideanGeometry.oangle
center
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
DFunLike.coe
LinearIsometryEquiv
RingHom.id
Semiring.toNonAssocSemiring
RingHomInvPair.ids
EquivLike.toFunLike
LinearIsometryEquiv.instEquivLike
Orientation.rotation
EuclideanGeometry.o
Real.instCommSemiring
Real.partialOrder
Real.instIsStrictOrderedRing
Real.Angle.coe
Real.pi
VSub.vsub
AddTorsor.toVSub
SeminormedAddGroup.toAddGroup
SeminormedAddCommGroup.toSeminormedAddGroup
midpoint
Real.instRing
invertibleTwo
Semifield.toDivisionSemiring
Field.toSemifield
Real.instField
RCLike.charZero_rclike
NormedAddCommGroup.toAddCommGroup
β€”Real.instIsStrictOrderedRing
RingHomInvPair.ids
Nat.instAtLeastTwoHAddOfNat
RCLike.charZero_rclike
EuclideanGeometry.dist_eq_iff_eq_smul_rotation_pi_div_two_vadd_midpoint
EuclideanGeometry.dist_center_eq_dist_center_of_mem_sphere
EuclideanGeometry.oangle_midpoint_rev_left
EuclideanGeometry.oangle.eq_1
vadd_vsub_assoc
midpoint_vsub_left
invOf_eq_inv
smul_inv_smulβ‚€
map_smul
SemilinearMapClass.toMulActionSemiHomClass
SemilinearIsometryClass.toSemilinearMapClass
SemilinearIsometryEquivClass.toSemilinearIsometryClass
LinearIsometryEquiv.instSemilinearIsometryEquivClass
smul_smul
add_comm
Orientation.tan_oangle_add_right_smul_rotation_pi_div_two
mul_div_cancel_rightβ‚€
EuclideanDomain.toMulDivCancelClass
two_ne_zero'
CharZero.NeZero.two
thales_theorem πŸ“–mathematicalIsDiameter
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
EuclideanGeometry.angle
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
EuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
β€”angle_eq_pi_div_two_iff_mem_sphere_of_isDiameter
two_zsmul_oangle_center_add_two_zsmul_oangle_eq_pi πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Real.Angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNormedAddCommGroupAngle
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
EuclideanGeometry.oangle
center
Real.Angle.coe
Real.pi
β€”Real.instIsStrictOrderedRing
oangle_center_eq_two_zsmul_oangle
oangle_eq_pi_sub_two_zsmul_oangle_center_right
add_sub_cancel
two_zsmul_oangle_eq πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
EuclideanGeometry.oangle
β€”Real.instIsStrictOrderedRing
EuclideanGeometry.oangle.eq_1
vsub_sub_vsub_cancel_right
Orientation.two_zsmul_oangle_sub_eq_two_zsmul_oangle_sub_of_norm_eq
dist_eq_norm_vsub
EuclideanGeometry.mem_sphere
Orientation.oangle.congr_simp

EuclideanGeometry.Sphere.IsTangentAt

Theorems

NameKindAssumesProvesValidatesDepends On
angle_eq_pi_div_two πŸ“–mathematicalEuclideanGeometry.Sphere.IsTangentAt
AffineSubspace
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
SetLike.instMembership
AffineSubspace.instSetLike
EuclideanGeometry.angle
EuclideanGeometry.Sphere.center
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”inner_left_eq_zero_of_mem
Nat.instAtLeastTwoHAddOfNat
EuclideanGeometry.angle.eq_1
neg_vsub_eq_vsub_rev
InnerProductGeometry.angle_neg_right
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Nat.cast_one
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true

Orientation

Theorems

NameKindAssumesProvesValidatesDepends On
oangle_eq_two_zsmul_oangle_sub_of_norm_eq πŸ“–mathematicalNorm.norm
NormedAddCommGroup.toNorm
oangle
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
SubNegMonoid.toSub
β€”Real.instIsStrictOrderedRing
norm_eq_zero
norm_zero
norm_ne_zero_iff
oangle_sub_left
oangle_eq_pi_sub_two_zsmul_oangle_sub_of_norm_eq
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.subst_into_smulg
Mathlib.Tactic.Abel.term_smulg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Abel.zero_smulg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
zero_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_neg
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Abel.zero_termg
Mathlib.Tactic.Abel.const_add_termg
add_zero
Mathlib.Meta.NormNum.IsInt.neg_to_eq
Mathlib.Meta.NormNum.isInt_mul
oangle_sub_right
sub_ne_zero_of_ne
oangle_neg_neg
neg_sub
oangle_eq_two_zsmul_oangle_sub_of_norm_eq_real πŸ“–mathematicalNorm.norm
NormedAddCommGroup.toNorm
oangle
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
SubNegMonoid.toSub
β€”Real.instIsStrictOrderedRing
oangle_eq_two_zsmul_oangle_sub_of_norm_eq
two_zsmul_oangle_sub_eq_two_zsmul_oangle_sub_of_norm_eq πŸ“–mathematicalNorm.norm
NormedAddCommGroup.toNorm
Real.Angle
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instNormedAddCommGroupAngle
oangle
SubNegMonoid.toSub
β€”Real.instIsStrictOrderedRing
oangle_eq_two_zsmul_oangle_sub_of_norm_eq_real

---

← Back to Index