Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Geometry/Euclidean/Angle/Unoriented/Basic.lean

Statistics

MetricCount
Definitionsangle
1
Theoremsangle_add_angle_eq_pi_of_angle_eq_pi, angle_comm, angle_eq_pi_iff, angle_eq_zero_iff, angle_le_pi, angle_neg_left, angle_neg_neg, angle_neg_right, angle_neg_self_of_nonzero, angle_nonneg, angle_normalize_left, angle_normalize_right, angle_self, angle_self_neg_of_nonzero, angle_smul_left_of_neg, angle_smul_left_of_pos, angle_smul_right_of_neg, angle_smul_right_of_pos, angle_smul_smul, angle_zero_left, angle_zero_right, continuousAt_angle, cos_angle, cos_angle_mul_norm_mul_norm, cos_eq_neg_one_iff_angle_eq_pi, cos_eq_one_iff_angle_eq_zero, cos_eq_zero_iff_angle_eq_pi_div_two, eq_of_angle_eq_zero_of_norm_eq, inner_eq_cos_angle_of_norm_eq_one, inner_eq_mul_norm_iff_angle_eq_zero, inner_eq_mul_norm_of_angle_eq_zero, inner_eq_neg_mul_norm_iff_angle_eq_pi, inner_eq_neg_mul_norm_of_angle_eq_pi, inner_eq_zero_iff_angle_eq_pi_div_two, norm_add_eq_add_norm_iff_angle_eq_zero, norm_add_eq_add_norm_of_angle_eq_zero, norm_add_eq_norm_sub_iff_angle_eq_pi_div_two, norm_sub_eq_abs_sub_norm_iff_angle_eq_zero, norm_sub_eq_abs_sub_norm_of_angle_eq_zero, norm_sub_eq_add_norm_iff_angle_eq_pi, norm_sub_eq_add_norm_of_angle_eq_pi, sin_angle, sin_angle_add, sin_angle_mul_norm_mul_norm, sin_angle_nonneg, sin_eq_one_iff_angle_eq_pi_div_two, sin_eq_zero_iff_angle_eq_zero_or_angle_eq_pi, angle_map, angle_coe
49
Total50

InnerProductGeometry

Definitions

NameCategoryTheorems
angle πŸ“–CompOp
111 mathmath: cos_angle_add_of_inner_eq_zero, angle_add_angle_sub_add_angle_sub_eq_pi, angle_neg_self_of_nonzero, Complex.norm_sub_mem_Icc_angle, angle_normalize_left, angle_sub_eq_arccos_of_inner_eq_zero, sin_angle, Complex.angle_exp_one, Complex.angle_div_right_eq_angle_mul_left, angle_smul_right_of_pos, norm_div_cos_angle_sub_of_inner_eq_zero, angle_smul_left_of_neg, angle_normalize_right, Complex.angle_mul_left, tan_angle_sub_mul_norm_of_inner_eq_zero, Complex.mul_angle_le_norm_sub, sin_angle_div_norm_eq_sin_angle_div_norm, norm_sub_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two, Orientation.oangle_eq_pi_iff_angle_eq_pi, angle_le_pi, norm_add_eq_norm_sub_iff_angle_eq_pi_div_two, tan_angle_add_mul_norm_of_inner_eq_zero, sin_angle_mul_norm_eq_sin_angle_mul_norm, norm_add_eq_add_norm_iff_angle_eq_zero, Orientation.oangle_eq_angle_or_eq_neg_angle, angle_neg_right, sin_angle_nonneg, angle_zero_right, sin_eq_one_iff_angle_eq_pi_div_two, norm_toLp_symm_crossProduct, angle_add_le_pi_div_two_of_inner_eq_zero, Orientation.angle_eq_iff_oangle_eq_or_sameRay, angle_eq_zero_iff, cos_angle, angle_add_eq_arctan_of_inner_eq_zero, cos_angle_mul_norm_mul_norm, Complex.angle_mul_right, sin_angle_sub_of_inner_eq_zero, Orientation.oangle_eq_zero_iff_angle_eq_zero, angle_self, sin_eq_zero_iff_angle_eq_zero_or_angle_eq_pi, norm_div_tan_angle_sub_of_inner_eq_zero, Complex.angle_eq_abs_arg, inner_eq_neg_mul_norm_iff_angle_eq_pi, cos_eq_zero_iff_angle_eq_pi_div_two, angle_sub_le_pi_div_two_of_inner_eq_zero, angle_zero_left, cos_eq_neg_one_iff_angle_eq_pi, norm_ofLp_crossProduct, norm_div_sin_angle_add_of_inner_eq_zero, cos_angle_sub_of_inner_eq_zero, norm_div_tan_angle_add_of_inner_eq_zero, angle_le_angle_add_angle, tan_angle_sub_of_inner_eq_zero, angle_smul_right_of_neg, sin_angle_sub_mul_norm_of_inner_eq_zero, angle_add_lt_pi_div_two_of_inner_eq_zero, norm_sub_eq_add_norm_iff_angle_eq_pi, angle_add_pos_of_inner_eq_zero, tan_angle_add_of_inner_eq_zero, Complex.norm_sub_le_angle, Orientation.oangle_eq_angle_of_sign_eq_one, Complex.angle_div_left_eq_angle_mul_right, angle_eq_angle_add_angle_iff, angle_nonneg, Orientation.cos_oangle_eq_cos_angle, angle_self_neg_of_nonzero, norm_div_sin_angle_sub_of_inner_eq_zero, Complex.angle_le_mul_norm_sub, angle_smul_smul, angle_sub_lt_pi_div_two_of_inner_eq_zero, cos_angle_add_mul_norm_of_inner_eq_zero, angle_sub_pos_of_inner_eq_zero, Orientation.angle_eq_iff_oangle_eq_of_sign_eq, angle_comm, angle_add_eq_arccos_of_inner_eq_zero, norm_add_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two, norm_sub_eq_abs_sub_norm_iff_angle_eq_zero, Orientation.angle_eq_abs_oangle_toReal, sin_angle_add_of_inner_eq_zero, angle_sub_eq_arcsin_of_inner_eq_zero, Complex.angle_one_left, Complex.angle_one_right, cos_eq_one_iff_angle_eq_zero, Submodule.angle_coe, Orientation.angle_eq_iff_oangle_eq_neg_of_sign_eq_neg, angle_sub_eq_arctan_of_inner_eq_zero, norm_sub_sq_eq_norm_sq_add_norm_sq_sub_two_mul_norm_mul_norm_mul_cos_angle, cos_angle_sub_mul_norm_of_inner_eq_zero, angle_sub_eq_angle_sub_rev_of_norm_eq, angle_eq_pi_iff, angle_neg_neg, inner_eq_cos_angle_of_norm_eq_one, continuousAt_angle, sin_angle_add, angle_add_eq_arcsin_of_inner_eq_zero, sin_angle_add_mul_norm_of_inner_eq_zero, inner_eq_zero_iff_angle_eq_pi_div_two, IsConformalMap.preserves_angle, angle_eq_angle_add_add_angle_add_of_mem_span, Orientation.eq_zero_or_angle_eq_zero_or_pi_of_sign_oangle_eq_zero, sin_angle_mul_norm_mul_norm, Orientation.oangle_eq_neg_angle_of_sign_eq_neg_one, LinearIsometry.angle_map, inner_eq_mul_norm_iff_angle_eq_zero, ConformalAt.preserves_angle, angle_smul_left_of_pos, angle_neg_left, angle_eq_angle_add_add_angle_add, Complex.angle_exp_exp, norm_div_cos_angle_add_of_inner_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
angle_add_angle_eq_pi_of_angle_eq_pi πŸ“–mathematicalangle
Real.pi
Real
Real.instAdd
β€”angle_eq_pi_iff
angle_smul_left_of_neg
angle_neg_left
add_sub_cancel
angle_comm πŸ“–mathematicalβ€”angleβ€”real_inner_comm
mul_comm
angle_eq_pi_iff πŸ“–mathematicalβ€”angle
Real.pi
Real
Real.instLT
Real.instZero
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”angle.eq_1
real_inner_div_norm_mul_norm_eq_neg_one_iff
Real.arccos_eq_pi
LE.le.ge_iff_eq'
abs_le
Real.instIsOrderedAddMonoid
abs_real_inner_div_norm_mul_norm_le_one
angle_eq_zero_iff πŸ“–mathematicalβ€”angle
Real
Real.instZero
Real.instLT
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”angle.eq_1
real_inner_div_norm_mul_norm_eq_one_iff
Real.arccos_eq_zero
LE.le.ge_iff_eq'
abs_le
Real.instIsOrderedAddMonoid
abs_real_inner_div_norm_mul_norm_le_one
angle_le_pi πŸ“–mathematicalβ€”Real
Real.instLE
angle
Real.pi
β€”Real.arccos_le_pi
angle_neg_left πŸ“–mathematicalβ€”angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real
Real.instSub
Real.pi
β€”angle_neg_neg
neg_neg
angle_neg_right
angle_neg_neg πŸ“–mathematicalβ€”angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”inner_neg_neg
norm_neg
angle_neg_right πŸ“–mathematicalβ€”angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real
Real.instSub
Real.pi
β€”Real.arccos_neg
norm_neg
inner_neg_right
neg_div
angle_neg_self_of_nonzero πŸ“–mathematicalβ€”angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.pi
β€”angle_comm
angle_self_neg_of_nonzero
angle_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
angle
β€”Real.arccos_nonneg
angle_normalize_left πŸ“–mathematicalβ€”angle
NormedSpace.normalize
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
β€”Nat.instAtLeastTwoHAddOfNat
NormedSpace.normalize_zero_eq_zero
angle_zero_left
NormedSpace.normalize.eq_1
angle_smul_left_of_pos
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
angle_normalize_right πŸ“–mathematicalβ€”angle
NormedSpace.normalize
InnerProductSpace.toNormedSpace
Real
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
β€”angle_comm
angle_normalize_left
angle_self πŸ“–mathematicalβ€”angle
Real
Real.instZero
β€”real_inner_self_eq_norm_mul_norm
div_self
inner_self_ne_zero
Real.arccos_one
angle_self_neg_of_nonzero πŸ“–mathematicalβ€”angle
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.pi
β€”angle_neg_right
angle_self
sub_zero
angle_smul_left_of_neg πŸ“–mathematicalReal
Real.instLT
Real.instZero
angle
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”angle_comm
angle_smul_right_of_neg
angle_smul_left_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
angle
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”angle_comm
angle_smul_right_of_pos
angle_smul_right_of_neg πŸ“–mathematicalReal
Real.instLT
Real.instZero
angle
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
β€”neg_neg
neg_smul
angle_neg_right
angle_smul_right_of_pos
neg_pos_of_neg
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
angle_smul_right_of_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
angle
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”inner_smul_right
norm_smul
NormedSpace.toNormSMulClass
Real.norm_eq_abs
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_of_lt
mul_assoc
mul_comm
mul_div_mul_left
ne_of_gt
angle_smul_smul πŸ“–mathematicalβ€”angle
Real
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
β€”mul_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
angle.eq_1
real_inner_smul_left
inner_smul_right
norm_smul
NormedSpace.toNormSMulClass
Real.norm_eq_abs
mul_mul_mul_comm
abs_mul_abs_self
mul_assoc
mul_div_mul_left
angle_zero_left πŸ“–mathematicalβ€”angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
inner_zero_left
zero_div
Real.arccos_zero
angle_zero_right πŸ“–mathematicalβ€”angle
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
inner_zero_right
zero_div
Real.arccos_zero
continuousAt_angle πŸ“–mathematicalβ€”ContinuousAt
Real
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Real.pseudoMetricSpace
angle
β€”ContinuousAt.comp'
Continuous.continuousAt
Real.continuous_arccos
ContinuousAt.divβ‚€
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousAt.inner
ContinuousAt.fst
continuousAt_id'
ContinuousAt.snd
ContinuousAt.fun_mul
ContinuousAt.norm
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
cos_angle πŸ“–mathematicalβ€”Real.cos
angle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instMul
Norm.norm
NormedAddCommGroup.toNorm
β€”Real.cos_arccos
abs_le
Real.instIsOrderedAddMonoid
abs_real_inner_div_norm_mul_norm_le_one
cos_angle_mul_norm_mul_norm πŸ“–mathematicalβ€”Real
Real.instMul
Real.cos
angle
Norm.norm
NormedAddCommGroup.toNorm
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
β€”cos_angle
div_mul_cancel_of_imp
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
inner_zero_left
inner_zero_right
cos_eq_neg_one_iff_angle_eq_pi πŸ“–mathematicalβ€”Real.cos
angle
Real
Real.instNeg
Real.instOne
Real.pi
β€”Real.cos_pi
Set.InjOn.eq_iff
Real.injOn_cos
angle_nonneg
angle_le_pi
Set.right_mem_Icc
LT.lt.le
Real.pi_pos
cos_eq_one_iff_angle_eq_zero πŸ“–mathematicalβ€”Real.cos
angle
Real
Real.instOne
Real.instZero
β€”Real.cos_zero
Set.InjOn.eq_iff
Real.injOn_cos
angle_nonneg
angle_le_pi
Set.left_mem_Icc
LT.lt.le
Real.pi_pos
cos_eq_zero_iff_angle_eq_pi_div_two πŸ“–mathematicalβ€”Real.cos
angle
Real
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Real.cos_pi_div_two
Set.InjOn.eq_iff
Real.injOn_cos
angle_nonneg
angle_le_pi
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_neg
Real.instIsStrictOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
Real.pi_pos
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
eq_of_angle_eq_zero_of_norm_eq πŸ“–β€”angle
Real
Real.instZero
Norm.norm
NormedAddCommGroup.toNorm
β€”β€”β€”
inner_eq_cos_angle_of_norm_eq_one πŸ“–mathematicalNorm.norm
NormedAddCommGroup.toNorm
Real
Real.instOne
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.cos
angle
β€”cos_angle
mul_one
div_one
inner_eq_mul_norm_iff_angle_eq_zero πŸ“–mathematicalβ€”Inner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instMul
Norm.norm
NormedAddCommGroup.toNorm
angle
Real.instZero
β€”LT.lt.ne'
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
angle.eq_1
div_self
Real.arccos_one
inner_eq_mul_norm_of_angle_eq_zero
inner_eq_mul_norm_of_angle_eq_zero πŸ“–mathematicalangle
Real
Real.instZero
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instMul
Norm.norm
NormedAddCommGroup.toNorm
β€”Real.cos_zero
one_mul
inner_eq_neg_mul_norm_iff_angle_eq_pi πŸ“–mathematicalβ€”Inner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNeg
Real.instMul
Norm.norm
NormedAddCommGroup.toNorm
angle
Real.pi
β€”LT.lt.ne'
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
angle.eq_1
neg_div
div_self
Real.arccos_neg_one
inner_eq_neg_mul_norm_of_angle_eq_pi
inner_eq_neg_mul_norm_of_angle_eq_pi πŸ“–mathematicalangle
Real.pi
Inner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instNeg
Real.instMul
Norm.norm
NormedAddCommGroup.toNorm
β€”Real.cos_pi
neg_mul
one_mul
inner_eq_zero_iff_angle_eq_pi_div_two πŸ“–mathematicalβ€”Inner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
angle
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
inner_zero_left
inner_zero_right
norm_add_eq_add_norm_iff_angle_eq_zero πŸ“–mathematicalβ€”Norm.norm
NormedAddCommGroup.toNorm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
Real.instAdd
angle
Real.instZero
β€”inner_eq_mul_norm_iff_angle_eq_zero
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Nat.cast_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
neg_eq_zero
sub_eq_zero_of_eq
norm_add_pow_two_real
sq_eq_sqβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
CancelDenoms.sub_subst
CancelDenoms.div_subst
CancelDenoms.pow_subst
CancelDenoms.add_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.one_natPow
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
norm_add_eq_add_norm_of_angle_eq_zero
norm_add_eq_add_norm_of_angle_eq_zero πŸ“–mathematicalangle
Real
Real.instZero
Norm.norm
NormedAddCommGroup.toNorm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.instAdd
β€”sq_eq_sqβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.instAtLeastTwoHAddOfNat
norm_add_pow_two_real
inner_eq_mul_norm_of_angle_eq_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
norm_add_eq_norm_sub_iff_angle_eq_pi_div_two πŸ“–mathematicalβ€”Norm.norm
NormedAddCommGroup.toNorm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
angle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sq_eq_sqβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
inner_eq_zero_iff_angle_eq_pi_div_two
norm_add_pow_two_real
norm_sub_pow_two_real
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
neg_eq_zero
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Linarith.mul_eq
norm_sub_eq_abs_sub_norm_iff_angle_eq_zero πŸ“–mathematicalβ€”Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
abs
Real
Real.lattice
Real.instAddGroup
Real.instSub
angle
Real.instZero
β€”inner_eq_mul_norm_iff_angle_eq_zero
sq_abs
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Nat.cast_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
sub_eq_zero_of_eq
norm_sub_pow_two_real
CancelDenoms.sub_subst
CancelDenoms.div_subst
CancelDenoms.pow_subst
CancelDenoms.add_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.one_natPow
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Tactic.Linarith.mul_neg
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Ring.neg_congr
neg_eq_zero
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
norm_sub_eq_abs_sub_norm_of_angle_eq_zero
norm_sub_eq_abs_sub_norm_of_angle_eq_zero πŸ“–mathematicalangle
Real
Real.instZero
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
abs
Real.lattice
Real.instAddGroup
Real.instSub
β€”sq_eq_sqβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Nat.instAtLeastTwoHAddOfNat
norm_sub_pow_two_real
inner_eq_mul_norm_of_angle_eq_zero
sq_abs
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
norm_sub_eq_add_norm_iff_angle_eq_pi πŸ“–mathematicalβ€”Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real
Real.instAdd
angle
Real.pi
β€”inner_eq_neg_mul_norm_iff_angle_eq_pi
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Nat.cast_one
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
sub_eq_zero_of_eq
norm_sub_pow_two_real
sq_eq_sqβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
CancelDenoms.sub_subst
CancelDenoms.div_subst
CancelDenoms.add_subst
CancelDenoms.pow_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.one_natPow
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Ring.neg_congr
neg_eq_zero
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.IsRat.to_isInt
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
norm_sub_eq_add_norm_of_angle_eq_pi
norm_sub_eq_add_norm_of_angle_eq_pi πŸ“–mathematicalangle
Real.pi
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real
Real.instAdd
β€”sq_eq_sqβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_nonneg
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.instAtLeastTwoHAddOfNat
norm_sub_pow_two_real
inner_eq_neg_mul_norm_of_angle_eq_pi
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.mul_one
sin_angle πŸ“–mathematicalβ€”Real.sin
angle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.sqrt
Real.instSub
Real.instMul
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Norm.norm
NormedAddCommGroup.toNorm
β€”sin_angle_mul_norm_mul_norm
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
ne_of_gt
norm_pos_iff
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
sin_angle_add πŸ“–mathematicalβ€”Real.sin
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.sqrt
Real.instSub
Real.instMul
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
Norm.norm
NormedAddCommGroup.toNorm
β€”sin_angle
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
ne_of_gt
norm_pos_iff
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
inner_add_right
inner_add_left
real_inner_comm
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
add_zero
Mathlib.Tactic.RingNF.add_neg
sin_angle_mul_norm_mul_norm πŸ“–mathematicalβ€”Real
Real.instMul
Real.sin
angle
Norm.norm
NormedAddCommGroup.toNorm
Real.sqrt
Real.instSub
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
β€”Real.sin_arccos
Real.sqrt_sq
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
norm_nonneg
Real.sqrt_mul'
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
even_two_mul
sq
eq_or_ne
inner_zero_left
norm_zero
MulZeroClass.zero_mul
div_zero
MulZeroClass.mul_zero
sub_zero
zero_pow
Nat.instCharZero
Real.sqrt_zero
inner_self_eq_norm_sq_to_K
sub_self
inner_zero_right
real_inner_self_eq_norm_mul_norm
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
norm_pos_iff
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_ofNat
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.eval_cons_eq_eval_of_eq_of_eq
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.zpow'_one
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
sin_angle_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
Real.sin
angle
β€”Real.sin_nonneg_of_nonneg_of_le_pi
angle_nonneg
angle_le_pi
sin_eq_one_iff_angle_eq_pi_div_two πŸ“–mathematicalβ€”Real.sin
angle
Real
Real.instOne
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
cos_eq_zero_iff_angle_eq_pi_div_two
abs_eq_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Real.abs_cos_eq_sqrt_one_sub_sin_sq
one_pow
sub_self
Real.sqrt_zero
Real.sin_pi_div_two
sin_eq_zero_iff_angle_eq_zero_or_angle_eq_pi πŸ“–mathematicalβ€”Real.sin
angle
Real
Real.instZero
Real.pi
β€”Real.sin_eq_zero_iff_cos_eq
cos_eq_one_iff_angle_eq_zero
cos_eq_neg_one_iff_angle_eq_pi

LinearIsometry

Theorems

NameKindAssumesProvesValidatesDepends On
angle_map πŸ“–mathematicalβ€”InnerProductGeometry.angle
DFunLike.coe
LinearIsometry
Real
Real.semiring
RingHom.id
Semiring.toNonAssocSemiring
NormedAddCommGroup.toSeminormedAddCommGroup
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
instFunLike
β€”InnerProductGeometry.angle.eq_1
inner_map_map
norm_map

Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
angle_coe πŸ“–mathematicalβ€”InnerProductGeometry.angle
Submodule
Real
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
SetLike.instMembership
setLike
normedAddCommGroup
Real.instRing
innerProductSpace
β€”LinearIsometry.angle_map

---

← Back to Index