Documentation Verification Report

RightAngle

πŸ“ Source: Mathlib/Geometry/Euclidean/Angle/Unoriented/RightAngle.lean

Statistics

MetricCount
Definitions0
Theoremsangle_eq_arccos_of_angle_eq_pi_div_two, angle_eq_arcsin_of_angle_eq_pi_div_two, angle_eq_arctan_of_angle_eq_pi_div_two, angle_le_pi_div_two_of_angle_eq_pi_div_two, angle_lt_pi_div_two_of_angle_eq_pi_div_two, angle_pos_of_angle_eq_pi_div_two, cos_angle_mul_dist_of_angle_eq_pi_div_two, cos_angle_of_angle_eq_pi_div_two, dist_div_cos_angle_of_angle_eq_pi_div_two, dist_div_sin_angle_of_angle_eq_pi_div_two, dist_div_tan_angle_of_angle_eq_pi_div_two, dist_sq_eq_dist_sq_add_dist_sq_iff_angle_eq_pi_div_two, sin_angle_mul_dist_of_angle_eq_pi_div_two, sin_angle_of_angle_eq_pi_div_two, tan_angle_mul_dist_of_angle_eq_pi_div_two, tan_angle_of_angle_eq_pi_div_two, angle_add_eq_arccos_of_inner_eq_zero, angle_add_eq_arcsin_of_inner_eq_zero, angle_add_eq_arctan_of_inner_eq_zero, angle_add_le_pi_div_two_of_inner_eq_zero, angle_add_lt_pi_div_two_of_inner_eq_zero, angle_add_pos_of_inner_eq_zero, angle_sub_eq_arccos_of_inner_eq_zero, angle_sub_eq_arcsin_of_inner_eq_zero, angle_sub_eq_arctan_of_inner_eq_zero, angle_sub_le_pi_div_two_of_inner_eq_zero, angle_sub_lt_pi_div_two_of_inner_eq_zero, angle_sub_pos_of_inner_eq_zero, cos_angle_add_mul_norm_of_inner_eq_zero, cos_angle_add_of_inner_eq_zero, cos_angle_sub_mul_norm_of_inner_eq_zero, cos_angle_sub_of_inner_eq_zero, norm_add_sq_eq_norm_sq_add_norm_sq', norm_add_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two, norm_div_cos_angle_add_of_inner_eq_zero, norm_div_cos_angle_sub_of_inner_eq_zero, norm_div_sin_angle_add_of_inner_eq_zero, norm_div_sin_angle_sub_of_inner_eq_zero, norm_div_tan_angle_add_of_inner_eq_zero, norm_div_tan_angle_sub_of_inner_eq_zero, norm_sub_sq_eq_norm_sq_add_norm_sq', norm_sub_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two, sin_angle_add_mul_norm_of_inner_eq_zero, sin_angle_add_of_inner_eq_zero, sin_angle_sub_mul_norm_of_inner_eq_zero, sin_angle_sub_of_inner_eq_zero, tan_angle_add_mul_norm_of_inner_eq_zero, tan_angle_add_of_inner_eq_zero, tan_angle_sub_mul_norm_of_inner_eq_zero, tan_angle_sub_of_inner_eq_zero
50
Total50

EuclideanGeometry

Theorems

NameKindAssumesProvesValidatesDepends On
angle_eq_arccos_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.arccos
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
β€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
dist_eq_norm_vsub'
dist_eq_norm_vsub
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.angle_add_eq_arccos_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
angle_eq_arcsin_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.arcsin
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
β€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
dist_eq_norm_vsub
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.angle_add_eq_arcsin_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
vsub_ne_zero
angle_eq_arctan_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.arctan
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
β€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
dist_eq_norm_vsub
dist_eq_norm_vsub'
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.angle_add_eq_arctan_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
vsub_ne_zero
angle_le_pi_div_two_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instLEβ€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.angle_add_le_pi_div_two_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
angle_lt_pi_div_two_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instLTβ€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.angle_add_lt_pi_div_two_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
vsub_ne_zero
angle_pos_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instLT
Real.instZero
β€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.angle_add_pos_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
vsub_eq_zero_iff_eq
vsub_ne_zero
cos_angle_mul_dist_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Real.cos
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
β€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
dist_eq_norm_vsub'
dist_eq_norm_vsub
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.cos_angle_add_mul_norm_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
cos_angle_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.cos
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
β€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
dist_eq_norm_vsub'
dist_eq_norm_vsub
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.cos_angle_add_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
dist_div_cos_angle_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Real.cos
β€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
dist_eq_norm_vsub'
dist_eq_norm_vsub
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.norm_div_cos_angle_add_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
vsub_eq_zero_iff_eq
vsub_ne_zero
dist_div_sin_angle_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Real.sin
β€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
dist_eq_norm_vsub
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.norm_div_sin_angle_add_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
vsub_eq_zero_iff_eq
vsub_ne_zero
dist_div_tan_angle_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Real.tan
β€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
dist_eq_norm_vsub
dist_eq_norm_vsub'
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.norm_div_tan_angle_add_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
vsub_eq_zero_iff_eq
vsub_ne_zero
dist_sq_eq_dist_sq_add_dist_sq_iff_angle_eq_pi_div_two πŸ“–mathematicalβ€”Real
Real.instMul
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Real.instAdd
angle
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
dist_comm
dist_eq_norm_vsub
InnerProductGeometry.norm_sub_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two
vsub_sub_vsub_cancel_right
neg_vsub_eq_vsub_rev
norm_neg
sin_angle_mul_dist_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Real.sin
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
β€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
dist_eq_norm_vsub
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.sin_angle_add_mul_norm_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
sin_angle_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.sin
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
β€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
dist_eq_norm_vsub
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.sin_angle_add_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
vsub_ne_zero
tan_angle_mul_dist_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Real.tan
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
β€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
dist_eq_norm_vsub
dist_eq_norm_vsub'
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.tan_angle_add_mul_norm_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
vsub_eq_zero_iff_eq
vsub_ne_zero
tan_angle_of_angle_eq_pi_div_two πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.tan
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
β€”Nat.instAtLeastTwoHAddOfNat
angle.eq_1
dist_eq_norm_vsub
dist_eq_norm_vsub'
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.tan_angle_add_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two

InnerProductGeometry

Theorems

NameKindAssumesProvesValidatesDepends On
angle_add_eq_arccos_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.arccos
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”angle.eq_1
inner_add_right
add_zero
real_inner_self_eq_norm_mul_norm
Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
MulZeroClass.zero_mul
div_zero
Real.arccos_zero
zero_div
div_mul_eq_div_div
mul_self_div_self
angle_add_eq_arcsin_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.arcsin
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”pow_two
norm_add_sq_eq_norm_sq_add_norm_sq_real
ne_of_lt
Left.add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_self_pos
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
norm_ne_zero_iff
mul_self_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Left.add_pos_of_nonneg_of_pos
angle_add_eq_arccos_of_inner_eq_zero
Real.arccos_eq_arcsin
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
norm_nonneg
div_pow
one_sub_div
add_sub_cancel_left
Real.sqrt_sq
angle_add_eq_arctan_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.arctan
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”angle_add_eq_arcsin_of_inner_eq_zero
Real.arctan_eq_arcsin
div_mul_eq_div_div
norm_add_eq_sqrt_iff_real_inner_eq_zero
Real.sqrt_sq
norm_nonneg
Nat.cast_one
Real.sqrt_mul
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
div_pow
pow_two
mul_add
Distrib.leftDistribClass
mul_one
mul_div
mul_comm
div_self
LT.lt.ne'
mul_self_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
norm_ne_zero_iff
angle_add_le_pi_div_two_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.instLE
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
angle_add_eq_arccos_of_inner_eq_zero
Real.arccos_le_pi_div_two
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_nonneg
angle_add_lt_pi_div_two_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.instLT
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
angle_add_eq_arccos_of_inner_eq_zero
Real.arccos_lt_pi_div_two
norm_add_eq_sqrt_iff_real_inner_eq_zero
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_pos_iff
Real.sqrt_pos
Left.add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_self_pos
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
norm_ne_zero_iff
mul_self_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
angle_add_pos_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instLT
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”angle_add_eq_arccos_of_inner_eq_zero
Real.arccos_pos
norm_add_eq_sqrt_iff_real_inner_eq_zero
norm_zero
MulZeroClass.mul_zero
zero_add
Real.sqrt_mul_self
zero_div
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
div_lt_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.sqrt_pos
Left.add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_self_pos
AddGroup.existsAddOfLE
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
norm_ne_zero_iff
mul_self_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Real.lt_sqrt
norm_nonneg
pow_two
angle_sub_eq_arccos_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.arccos
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”sub_eq_add_neg
angle_add_eq_arccos_of_inner_eq_zero
inner_neg_right
neg_eq_zero
angle_sub_eq_arcsin_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.arcsin
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”sub_eq_add_neg
angle_add_eq_arcsin_of_inner_eq_zero
inner_neg_right
neg_eq_zero
neg_ne_zero
norm_neg
angle_sub_eq_arctan_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.arctan
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”sub_eq_add_neg
angle_add_eq_arctan_of_inner_eq_zero
inner_neg_right
neg_eq_zero
norm_neg
angle_sub_le_pi_div_two_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.instLE
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sub_eq_add_neg
angle_add_le_pi_div_two_of_inner_eq_zero
inner_neg_right
neg_eq_zero
angle_sub_lt_pi_div_two_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.instLT
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sub_eq_add_neg
angle_add_lt_pi_div_two_of_inner_eq_zero
inner_neg_right
neg_eq_zero
angle_sub_pos_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instLT
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”sub_eq_add_neg
angle_add_pos_of_inner_eq_zero
inner_neg_right
neg_eq_zero
neg_ne_zero
cos_angle_add_mul_norm_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.instMul
Real.cos
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”cos_angle_add_of_inner_eq_zero
norm_add_sq_eq_norm_sq_add_norm_sq_real
mul_self_eq_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
add_eq_zero_iff_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
mul_self_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
MulZeroClass.zero_mul
zero_div
div_mul_cancelβ‚€
cos_angle_add_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.cos
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”angle_add_eq_arccos_of_inner_eq_zero
Real.cos_arccos
le_trans
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_nonneg
div_le_one_of_leβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_self_le_mul_self_iff
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_add_sq_eq_norm_sq_add_norm_sq_real
le_add_of_nonneg_right
mul_self_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
cos_angle_sub_mul_norm_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.instMul
Real.cos
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Norm.norm
NormedAddCommGroup.toNorm
β€”sub_eq_add_neg
cos_angle_add_mul_norm_of_inner_eq_zero
inner_neg_right
neg_eq_zero
cos_angle_sub_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.cos
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”sub_eq_add_neg
cos_angle_add_of_inner_eq_zero
inner_neg_right
neg_eq_zero
norm_add_sq_eq_norm_sq_add_norm_sq' πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Norm.norm
NormedAddCommGroup.toNorm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.instAdd
β€”Nat.instAtLeastTwoHAddOfNat
norm_add_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two
norm_add_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two πŸ“–mathematicalβ€”Real
Real.instMul
Norm.norm
NormedAddCommGroup.toNorm
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Real.instAdd
angle
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
norm_add_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero
inner_eq_zero_iff_angle_eq_pi_div_two
norm_div_cos_angle_add_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
Real.cos
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”cos_angle_add_of_inner_eq_zero
div_div_eq_mul_div
mul_comm
div_eq_mul_inv
mul_inv_cancel_rightβ‚€
norm_ne_zero_iff
add_zero
div_div_self
norm_div_cos_angle_sub_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
Real.cos
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”sub_eq_add_neg
norm_div_cos_angle_add_of_inner_eq_zero
inner_neg_right
neg_eq_zero
norm_div_sin_angle_add_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
Real.sin
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”Nat.instAtLeastTwoHAddOfNat
zero_add
angle_zero_left
Real.sin_pi_div_two
div_one
sin_angle_add_of_inner_eq_zero
div_div_eq_mul_div
mul_comm
div_eq_mul_inv
mul_inv_cancel_rightβ‚€
norm_ne_zero_iff
norm_div_sin_angle_sub_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
Real.sin
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”sub_eq_add_neg
norm_neg
norm_div_sin_angle_add_of_inner_eq_zero
inner_neg_right
neg_eq_zero
neg_ne_zero
norm_div_tan_angle_add_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
Real.tan
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
β€”tan_angle_add_of_inner_eq_zero
norm_zero
div_zero
div_div_eq_mul_div
mul_comm
div_eq_mul_inv
mul_inv_cancel_rightβ‚€
norm_ne_zero_iff
norm_div_tan_angle_sub_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
Real.tan
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
β€”sub_eq_add_neg
norm_neg
norm_div_tan_angle_add_of_inner_eq_zero
inner_neg_right
neg_eq_zero
neg_ne_zero
norm_sub_sq_eq_norm_sq_add_norm_sq' πŸ“–mathematicalangle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instAdd
β€”Nat.instAtLeastTwoHAddOfNat
norm_sub_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two
norm_sub_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two πŸ“–mathematicalβ€”Real
Real.instMul
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Real.instAdd
angle
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
norm_sub_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero
inner_eq_zero_iff_angle_eq_pi_div_two
sin_angle_add_mul_norm_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.instMul
Real.sin
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”Nat.instAtLeastTwoHAddOfNat
add_zero
angle_zero_right
Real.sin_pi_div_two
norm_zero
MulZeroClass.mul_zero
sin_angle_add_of_inner_eq_zero
not_and_or
div_mul_cancelβ‚€
mul_self_ne_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
norm_add_sq_eq_norm_sq_add_norm_sq_real
ne_of_lt
Left.add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_self_pos
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
norm_ne_zero_iff
mul_self_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Left.add_pos_of_nonneg_of_pos
sin_angle_add_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.sin
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”angle_add_eq_arcsin_of_inner_eq_zero
Real.sin_arcsin
le_trans
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
norm_nonneg
div_le_one_of_leβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_self_le_mul_self_iff
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
norm_add_sq_eq_norm_sq_add_norm_sq_real
le_add_of_nonneg_left
covariant_swap_add_of_covariant_add
mul_self_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
sin_angle_sub_mul_norm_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.instMul
Real.sin
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Norm.norm
NormedAddCommGroup.toNorm
β€”sub_eq_add_neg
sin_angle_add_mul_norm_of_inner_eq_zero
inner_neg_right
neg_eq_zero
norm_neg
sin_angle_sub_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.sin
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”sub_eq_add_neg
sin_angle_add_of_inner_eq_zero
inner_neg_right
neg_eq_zero
neg_ne_zero
norm_neg
tan_angle_add_mul_norm_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instMul
Real.tan
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”tan_angle_add_of_inner_eq_zero
IsUnit.div_mul_cancel
norm_zero
zero_div
MulZeroClass.zero_mul
tan_angle_add_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.tan
angle
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”Nat.instAtLeastTwoHAddOfNat
zero_add
angle_zero_left
Real.tan_pi_div_two
norm_zero
div_zero
angle_add_eq_arctan_of_inner_eq_zero
Real.tan_arctan
tan_angle_sub_mul_norm_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.instMul
Real.tan
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
Norm.norm
NormedAddCommGroup.toNorm
β€”sub_eq_add_neg
tan_angle_add_mul_norm_of_inner_eq_zero
inner_neg_right
neg_eq_zero
norm_neg
tan_angle_sub_of_inner_eq_zero πŸ“–mathematicalInner.inner
Real
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
Real.instZero
Real.tan
angle
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
DivInvMonoid.toDiv
Real.instDivInvMonoid
Norm.norm
NormedAddCommGroup.toNorm
β€”sub_eq_add_neg
tan_angle_add_of_inner_eq_zero
inner_neg_right
neg_eq_zero
norm_neg

---

← Back to Index