π Source: Mathlib/Geometry/Euclidean/Angle/Unoriented/RightAngle.lean
angle_eq_arccos_of_angle_eq_pi_div_two
angle_eq_arcsin_of_angle_eq_pi_div_two
angle_eq_arctan_of_angle_eq_pi_div_two
angle_le_pi_div_two_of_angle_eq_pi_div_two
angle_lt_pi_div_two_of_angle_eq_pi_div_two
angle_pos_of_angle_eq_pi_div_two
cos_angle_mul_dist_of_angle_eq_pi_div_two
cos_angle_of_angle_eq_pi_div_two
dist_div_cos_angle_of_angle_eq_pi_div_two
dist_div_sin_angle_of_angle_eq_pi_div_two
dist_div_tan_angle_of_angle_eq_pi_div_two
dist_sq_eq_dist_sq_add_dist_sq_iff_angle_eq_pi_div_two
sin_angle_mul_dist_of_angle_eq_pi_div_two
sin_angle_of_angle_eq_pi_div_two
tan_angle_mul_dist_of_angle_eq_pi_div_two
tan_angle_of_angle_eq_pi_div_two
angle_add_eq_arccos_of_inner_eq_zero
angle_add_eq_arcsin_of_inner_eq_zero
angle_add_eq_arctan_of_inner_eq_zero
angle_add_le_pi_div_two_of_inner_eq_zero
angle_add_lt_pi_div_two_of_inner_eq_zero
angle_add_pos_of_inner_eq_zero
angle_sub_eq_arccos_of_inner_eq_zero
angle_sub_eq_arcsin_of_inner_eq_zero
angle_sub_eq_arctan_of_inner_eq_zero
angle_sub_le_pi_div_two_of_inner_eq_zero
angle_sub_lt_pi_div_two_of_inner_eq_zero
angle_sub_pos_of_inner_eq_zero
cos_angle_add_mul_norm_of_inner_eq_zero
cos_angle_add_of_inner_eq_zero
cos_angle_sub_mul_norm_of_inner_eq_zero
cos_angle_sub_of_inner_eq_zero
norm_add_sq_eq_norm_sq_add_norm_sq'
norm_add_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two
norm_div_cos_angle_add_of_inner_eq_zero
norm_div_cos_angle_sub_of_inner_eq_zero
norm_div_sin_angle_add_of_inner_eq_zero
norm_div_sin_angle_sub_of_inner_eq_zero
norm_div_tan_angle_add_of_inner_eq_zero
norm_div_tan_angle_sub_of_inner_eq_zero
norm_sub_sq_eq_norm_sq_add_norm_sq'
norm_sub_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two
sin_angle_add_mul_norm_of_inner_eq_zero
sin_angle_add_of_inner_eq_zero
sin_angle_sub_mul_norm_of_inner_eq_zero
sin_angle_sub_of_inner_eq_zero
tan_angle_add_mul_norm_of_inner_eq_zero
tan_angle_add_of_inner_eq_zero
tan_angle_sub_mul_norm_of_inner_eq_zero
tan_angle_sub_of_inner_eq_zero
angle
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.arccos
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
angle.eq_1
dist_eq_norm_vsub'
dist_eq_norm_vsub
vsub_add_vsub_cancel
add_comm
InnerProductGeometry.angle_add_eq_arccos_of_inner_eq_zero
neg_vsub_eq_vsub_rev
inner_neg_left
neg_eq_zero
real_inner_comm
InnerProductGeometry.inner_eq_zero_iff_angle_eq_pi_div_two
Real.arcsin
InnerProductGeometry.angle_add_eq_arcsin_of_inner_eq_zero
vsub_ne_zero
Real.arctan
InnerProductGeometry.angle_add_eq_arctan_of_inner_eq_zero
Real.instLE
InnerProductGeometry.angle_add_le_pi_div_two_of_inner_eq_zero
Real.instLT
InnerProductGeometry.angle_add_lt_pi_div_two_of_inner_eq_zero
Real.instZero
InnerProductGeometry.angle_add_pos_of_inner_eq_zero
vsub_eq_zero_iff_eq
Real.instMul
Real.cos
InnerProductGeometry.cos_angle_add_mul_norm_of_inner_eq_zero
InnerProductGeometry.cos_angle_add_of_inner_eq_zero
InnerProductGeometry.norm_div_cos_angle_add_of_inner_eq_zero
Real.sin
InnerProductGeometry.norm_div_sin_angle_add_of_inner_eq_zero
Real.tan
InnerProductGeometry.norm_div_tan_angle_add_of_inner_eq_zero
Real.instAdd
dist_comm
InnerProductGeometry.norm_sub_sq_eq_norm_sq_add_norm_sq_iff_angle_eq_pi_div_two
vsub_sub_vsub_cancel_right
norm_neg
InnerProductGeometry.sin_angle_add_mul_norm_of_inner_eq_zero
InnerProductGeometry.sin_angle_add_of_inner_eq_zero
InnerProductGeometry.tan_angle_add_mul_norm_of_inner_eq_zero
InnerProductGeometry.tan_angle_add_of_inner_eq_zero
Inner.inner
InnerProductSpace.toInner
Real.instRCLike
NormedAddCommGroup.toSeminormedAddCommGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
Norm.norm
NormedAddCommGroup.toNorm
inner_add_right
add_zero
real_inner_self_eq_norm_mul_norm
MulZeroClass.mul_zero
MulZeroClass.zero_mul
div_zero
Real.arccos_zero
zero_div
div_mul_eq_div_div
mul_self_div_self
pow_two
norm_add_sq_eq_norm_sq_add_norm_sq_real
ne_of_lt
Left.add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_self_pos
AddGroup.existsAddOfLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toMulPosStrictMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
norm_ne_zero_iff
mul_self_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Left.add_pos_of_nonneg_of_pos
Real.arccos_eq_arcsin
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
norm_nonneg
div_pow
one_sub_div
add_sub_cancel_left
Real.sqrt_sq
Real.arctan_eq_arcsin
norm_add_eq_sqrt_iff_real_inner_eq_zero
Nat.cast_one
Real.sqrt_mul
sq_nonneg
mul_add
Distrib.leftDistribClass
mul_one
mul_div
mul_comm
div_self
LT.lt.ne'
Real.arccos_le_pi_div_two
Real.arccos_lt_pi_div_two
div_pos
norm_pos_iff
Real.sqrt_pos
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
Real.arccos_pos
norm_zero
zero_add
Real.sqrt_mul_self
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
div_lt_one
Real.lt_sqrt
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
sub_eq_add_neg
inner_neg_right
neg_ne_zero
mul_self_eq_zero
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
add_eq_zero_iff_of_nonneg
covariant_swap_add_of_covariant_add
div_mul_cancelβ
Real.cos_arccos
le_trans
div_le_one_of_leβ
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
mul_self_le_mul_self_iff
IsOrderedRing.toMulPosMono
le_add_of_nonneg_right
norm_add_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero
inner_eq_zero_iff_angle_eq_pi_div_two
div_div_eq_mul_div
div_eq_mul_inv
mul_inv_cancel_rightβ
div_div_self
angle_zero_left
Real.sin_pi_div_two
div_one
norm_sub_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero
angle_zero_right
not_and_or
mul_self_ne_zero
Real.sin_arcsin
le_add_of_nonneg_left
IsUnit.div_mul_cancel
Real.tan_pi_div_two
Real.tan_arctan
---
β Back to Index