Documentation Verification Report

Simplex

πŸ“ Source: Mathlib/Geometry/Euclidean/Simplex.lean

Statistics

MetricCount
DefinitionsAcuteAngled
1
TheoremsacuteAngled, angle_eq_pi_div_three, acuteAngled_reindex_iff, dist_point_centroid, dist_point_faceOppositeCentroid, acuteAngled_iff_angle_lt, dist_point_centroid, dist_point_faceOppositeCentroid
8
Total9

Affine.Simplex

Definitions

NameCategoryTheorems
AcuteAngled πŸ“–MathDef
3 mathmath: Equilateral.acuteAngled, Affine.Triangle.acuteAngled_iff_angle_lt, acuteAngled_reindex_iff

Theorems

NameKindAssumesProvesValidatesDepends On
acuteAngled_reindex_iff πŸ“–mathematicalβ€”AcuteAngled
reindex
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
β€”Equiv.symm_apply_apply
EquivLike.toEmbeddingLike
dist_point_centroid πŸ“–mathematicalβ€”Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
points
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
centroid
Real.instDivisionRing
Real.instMul
Real.instNatCast
faceOppositeCentroid
β€”dist_eq_norm_vsub
point_vsub_centroid_eq_smul_vsub
RCLike.charZero_rclike
norm_smul
NormedSpace.toNormSMulClass
Real.norm_natCast
dist_point_faceOppositeCentroid πŸ“–mathematicalβ€”Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
points
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
faceOppositeCentroid
Real.instDivisionRing
Real.instMul
Real.instAdd
Real.instNatCast
Real.instOne
centroid
β€”dist_eq_norm_vsub
point_vsub_faceOppositeCentroid_eq_smul_vsub
RCLike.charZero_rclike
norm_smul
NormedSpace.toNormSMulClass
Nat.cast_one
RCLike.norm_natCast

Affine.Simplex.Equilateral

Theorems

NameKindAssumesProvesValidatesDepends On
acuteAngled πŸ“–mathematicalAffine.Simplex.Equilateral
Real
Real.instRing
NormedAddCommGroup.toSeminormedAddCommGroup
MetricSpace.toPseudoMetricSpace
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
Affine.Simplex.AcuteAngledβ€”Nat.instAtLeastTwoHAddOfNat
angle_eq_pi_div_three
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Real.instIsStrictOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Nat.cast_one
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.pi_pos
angle_eq_pi_div_three πŸ“–mathematicalAffine.Simplex.Equilateral
Real
Real.instRing
NormedAddCommGroup.toSeminormedAddCommGroup
MetricSpace.toPseudoMetricSpace
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
EuclideanGeometry.angle
Affine.Simplex.points
NormedAddCommGroup.toAddCommGroup
NormedAddTorsor.toAddTorsor
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
EuclideanGeometry.angle.eq_1
InnerProductGeometry.angle.eq_1
real_inner_eq_norm_mul_self_add_norm_mul_self_sub_norm_sub_mul_self_div_two
Real.arccos_eq_of_eq_cos
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.pi_nonneg
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Linarith.mul_nonpos
vsub_sub_vsub_cancel_right
Real.cos_pi_div_three
AffineIndependent.injective
Real.instNontrivial
Affine.Simplex.independent
dist_eq_zero
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
one_mul
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
div_one
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
Mathlib.Tactic.FieldSimp.NF.one_eq_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Meta.NormNum.isNat_add

Affine.Triangle

Theorems

NameKindAssumesProvesValidatesDepends On
acuteAngled_iff_angle_lt πŸ“–mathematicalβ€”Affine.Simplex.AcuteAngled
Real
Real.instLT
EuclideanGeometry.angle
Affine.Simplex.points
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.pi
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
EuclideanGeometry.angle_comm
Fintype.complete
dist_point_centroid πŸ“–mathematicalβ€”Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Affine.Simplex.points
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
Affine.Simplex.centroid
Real.instDivisionRing
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Affine.Simplex.faceOppositeCentroid
β€”Nat.instAtLeastTwoHAddOfNat
Affine.Simplex.dist_point_centroid
dist_point_faceOppositeCentroid πŸ“–mathematicalβ€”Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Affine.Simplex.points
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
Affine.Simplex.faceOppositeCentroid
Real.instDivisionRing
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Affine.Simplex.centroid
β€”Nat.instAtLeastTwoHAddOfNat
Affine.Simplex.dist_point_faceOppositeCentroid
Nat.cast_one

---

← Back to Index