Documentation Verification Report

Power

πŸ“ Source: Mathlib/Geometry/Euclidean/Sphere/Power.lean

Statistics

MetricCount
Definitionspower
1
Theoremspower_eq_dist_sq, dist_sq_eq_mul_dist_of_tangent_and_secant, isTangentAt_iff_dist_sq_eq_power, isTangentAt_of_dist_sq_eq_power, mul_dist_eq_abs_power, mul_dist_eq_neg_power_of_dist_center_le_radius, mul_dist_eq_power_of_radius_le_dist_center, mul_dist_eq_zero_of_mem_sphere, power_eq_zero_iff_mem_sphere, power_neg_iff_dist_center_lt_radius, power_nonneg_iff_radius_le_dist_center, power_nonpos_iff_dist_center_le_radius, power_pos_iff_radius_lt_dist_center, mul_dist_eq_abs_sub_sq_dist, mul_dist_eq_mul_dist_of_cospherical, mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi, mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero, mul_norm_eq_abs_sub_sq_norm
18
Total19

EuclideanGeometry

Theorems

NameKindAssumesProvesValidatesDepends On
mul_dist_eq_abs_sub_sq_dist πŸ“–mathematicalAffineSubspace
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
abs
Real.lattice
Real.instAddGroup
Real.instSub
Monoid.toNatPow
Real.instMonoid
β€”RCLike.charZero_rclike
vsub_sub_vsub_cancel_left
Nat.instAtLeastTwoHAddOfNat
midpoint_vsub_left
right_vsub_midpoint
add_comm
vsub_add_vsub_cancel
dist_eq_norm_vsub
InnerProductGeometry.mul_norm_eq_abs_sub_sq_norm
vadd_left_mem_affineSpan_pair
vsub_vadd
eq_sub_iff_add_eq'
eq_sub_iff_add_eq
Mathlib.Tactic.Module.NF.eq_of_eval_eq_eval
Mathlib.Tactic.Module.NF.sub_eq_eval
Mathlib.Tactic.Module.NF.atom_eq_eval
Mathlib.Tactic.Module.NF.smul_eq_eval
Mathlib.Tactic.Module.NF.add_eq_eval
Mathlib.Tactic.Module.NF.add_eq_evalβ‚‚
zero_add
Mathlib.Tactic.Module.NF.eval_algebraMap
AddCommMonoid.nat_isScalarTower
AddCommGroup.intIsScalarTower
Mathlib.Tactic.Module.NF.sub_eq_evalβ‚‚
Mathlib.Tactic.Module.NF.zero_sub_eq_eval
Mathlib.Tactic.Module.NF.eq_cons_cons
eq_natCast
RingHom.instRingHomClass
Nat.cast_one
eq_intCast
Int.cast_one
Nat.cast_add
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
mul_dist_eq_mul_dist_of_cospherical πŸ“–mathematicalCospherical
Set
Set.instInsert
Set.instSingletonSet
AffineSubspace
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Real.instMul
Dist.dist
PseudoMetricSpace.toDist
β€”cospherical_def
mul_dist_eq_abs_sub_sq_dist
mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi πŸ“–mathematicalCospherical
Set
Set.instInsert
Set.instSingletonSet
angle
Real.pi
Real
Real.instMul
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
β€”mul_dist_eq_mul_dist_of_cospherical
Wbtw.mem_affineSpan
Sbtw.wbtw
angle_eq_pi_iff_sbtw
mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero πŸ“–mathematicalCospherical
Set
Set.instInsert
Set.instSingletonSet
angle
Real
Real.instZero
Real.instMul
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
β€”mul_dist_eq_mul_dist_of_cospherical
Collinear.mem_affineSpan_of_mem_of_ne
collinear_of_angle_eq_zero

EuclideanGeometry.Sphere

Definitions

NameCategoryTheorems
power πŸ“–CompOp
10 mathmath: mul_dist_eq_abs_power, mul_dist_eq_neg_power_of_dist_center_le_radius, power_pos_iff_radius_lt_dist_center, IsTangentAt.power_eq_dist_sq, power_neg_iff_dist_center_lt_radius, power_eq_zero_iff_mem_sphere, mul_dist_eq_power_of_radius_le_dist_center, power_nonneg_iff_radius_le_dist_center, power_nonpos_iff_dist_center_le_radius, isTangentAt_iff_dist_sq_eq_power

Theorems

NameKindAssumesProvesValidatesDepends On
dist_sq_eq_mul_dist_of_tangent_and_secant πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
AffineSubspace
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
IsTangentAt
Monoid.toNatPow
Real.instMonoid
Dist.dist
PseudoMetricSpace.toDist
Real.instMul
β€”radius_nonneg_of_mem
IsTangent.radius_le_dist_center
IsTangentAt.isTangent
left_mem_affineSpan_pair
mul_dist_eq_power_of_radius_le_dist_center
power.eq_1
IsTangentAt.dist_sq_eq_of_mem
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
isTangentAt_iff_dist_sq_eq_power πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
IsTangentAt
affineSpan
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
Set
Set.instInsert
Set.instSingletonSet
Monoid.toNatPow
Real.instMonoid
Dist.dist
PseudoMetricSpace.toDist
power
β€”IsTangentAt.power_eq_dist_sq
norm_add_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
sub_eq_zero_of_eq
dist_eq_norm_vsub
sq
vsub_add_vsub_cancel
EuclideanGeometry.mem_sphere
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Ring.neg_congr
neg_eq_zero
right_mem_affineSpan_pair
mem_orthRadius_iff_inner_left
vadd_right_mem_affineSpan_pair
vsub_vadd
inner_smul_left
MulZeroClass.mul_zero
isTangentAt_of_dist_sq_eq_power πŸ“–mathematicalEuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Real
Monoid.toNatPow
Real.instMonoid
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
power
IsTangentAt
affineSpan
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
Set
Set.instInsert
Set.instSingletonSet
β€”isTangentAt_iff_dist_sq_eq_power
mul_dist_eq_abs_power πŸ“–mathematicalAffineSubspace
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
EuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Real.instMul
Dist.dist
PseudoMetricSpace.toDist
abs
Real.lattice
Real.instAddGroup
power
β€”EuclideanGeometry.mem_sphere
dist_comm
EuclideanGeometry.mul_dist_eq_abs_sub_sq_dist
power.eq_1
abs_sub_comm
mul_dist_eq_neg_power_of_dist_center_le_radius πŸ“–mathematicalReal
Real.instLE
Real.instZero
radius
AffineSubspace
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
EuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Dist.dist
PseudoMetricSpace.toDist
center
Real.instMul
Real.instNeg
power
β€”mul_dist_eq_abs_power
abs_of_nonpos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
power_nonpos_iff_dist_center_le_radius
mul_dist_eq_power_of_radius_le_dist_center πŸ“–mathematicalReal
Real.instLE
Real.instZero
radius
AffineSubspace
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
EuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Dist.dist
PseudoMetricSpace.toDist
center
Real.instMul
power
β€”mul_dist_eq_abs_power
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
power_nonneg_iff_radius_le_dist_center
mul_dist_eq_zero_of_mem_sphere πŸ“–mathematicalAffineSubspace
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
SetLike.instMembership
AffineSubspace.instSetLike
affineSpan
Set
Set.instInsert
Set.instSingletonSet
EuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
Real.instMul
Dist.dist
PseudoMetricSpace.toDist
Real.instZero
β€”EuclideanGeometry.mem_sphere
dist_comm
EuclideanGeometry.mul_dist_eq_abs_sub_sq_dist
sub_self
abs_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
power_eq_zero_iff_mem_sphere πŸ“–mathematicalReal
Real.instLE
Real.instZero
radius
power
EuclideanGeometry.Sphere
EuclideanGeometry.instMembershipSphere
β€”power.eq_1
EuclideanGeometry.mem_sphere
sub_eq_zero
pow_left_injβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
dist_nonneg
two_ne_zero
power_neg_iff_dist_center_lt_radius πŸ“–mathematicalReal
Real.instLE
Real.instZero
radius
Real.instLT
power
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
center
β€”power.eq_1
sub_neg
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
pow_lt_pow_iff_leftβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
dist_nonneg
two_ne_zero
power_nonneg_iff_radius_le_dist_center πŸ“–mathematicalReal
Real.instLE
Real.instZero
radius
power
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
center
β€”power.eq_1
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
pow_le_pow_iff_leftβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
dist_nonneg
two_ne_zero
power_nonpos_iff_dist_center_le_radius πŸ“–mathematicalReal
Real.instLE
Real.instZero
radius
power
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
center
β€”power.eq_1
sub_nonpos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
pow_le_pow_iff_leftβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
dist_nonneg
two_ne_zero
power_pos_iff_radius_lt_dist_center πŸ“–mathematicalReal
Real.instLE
Real.instZero
radius
Real.instLT
power
Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
center
β€”power.eq_1
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
pow_lt_pow_iff_leftβ‚€
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
dist_nonneg
two_ne_zero

EuclideanGeometry.Sphere.IsTangentAt

Theorems

NameKindAssumesProvesValidatesDepends On
power_eq_dist_sq πŸ“–mathematicalEuclideanGeometry.Sphere.IsTangentAt
affineSpan
Real
Real.instRing
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
Real.normedField
NormedAddCommGroup.toSeminormedAddCommGroup
InnerProductSpace.toNormedSpace
Real.instRCLike
NormedAddTorsor.toAddTorsor
MetricSpace.toPseudoMetricSpace
Set
Set.instInsert
Set.instSingletonSet
EuclideanGeometry.Sphere.power
Monoid.toNatPow
Real.instMonoid
Dist.dist
PseudoMetricSpace.toDist
β€”EuclideanGeometry.Sphere.power.eq_1
dist_sq_eq_of_mem
left_mem_affineSpan_pair
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.RingNF.nat_rawCast_1
mul_one
add_zero

InnerProductGeometry

Theorems

NameKindAssumesProvesValidatesDepends On
mul_norm_eq_abs_sub_sq_norm πŸ“–mathematicalReal
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
NormedSpace.toModule
Real.normedField
InnerProductSpace.toNormedSpace
Real.instRCLike
Norm.norm
NormedAddCommGroup.toNorm
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
NormedAddGroup.toAddGroup
NormedAddCommGroup.toNormedAddGroup
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
Real.instMul
abs
Real.lattice
Real.instAddGroup
Real.instSub
Monoid.toNatPow
β€”Nat.instAtLeastTwoHAddOfNat
inner_eq_zero_iff_angle_eq_pi_div_two
norm_add_eq_norm_sub_iff_angle_eq_pi_div_two
inner_smul_right
MulZeroClass.mul_zero
sub_smul
one_smul
add_smul
norm_smul
NormedSpace.toNormSMulClass
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
abs_mul
Real.instIsOrderedRing
abs_pow
abs_norm
Mathlib.Tactic.Ring.sub_congr
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.RingNF.nat_rawCast_1
mul_one
Mathlib.Tactic.RingNF.int_rawCast_neg
Mathlib.Tactic.RingNF.mul_neg
add_zero
Mathlib.Tactic.RingNF.add_neg
mul_pow
sq_abs
norm_add_sq_real
norm_sub_sq_real
sub_zero
add_sub_add_left_eq_sub
abs_sub_comm

---

← Back to Index