Documentation Verification Report

Monoid

πŸ“ Source: Mathlib/Geometry/Manifold/Algebra/Monoid.lean

Statistics

MetricCount
DefinitionsContMDiffAdd, ContMDiffAddMonoidMorphism, toAddMonoidHom, ContMDiffMonoidMorphism, toMonoidHom, ContMDiffMul, Design_choices_about_smooth_algebraic_structures, Β«term𝑳», Β«term𝑹», instFunLikeContMDiffAddMonoidMorphism, instFunLikeContMDiffMonoidMorphism, instInhabitedContMDiffAddMonoidMorphism, instInhabitedContMDiffMonoidMorphism, instOneContMDiffMonoidMorphism, instZeroContMDiffAddMonoidMorphism, smoothLeftMul, smoothRightMul
17
Theoremsadd, div_const, mul, nsmul, pow, prod, sub_const, sum, contMDiff_add, of_le, prod, toIsManifold, contMDiff_toFun, add, div_const, mul, nsmul, pow, prod, sub_const, sum, contMDiff_toFun, contMDiff_mul, of_le, prod, toIsManifold, add, div_const, mul, nsmul, pow, sub_const, add, div_const, mul, nsmul, pow, prod, sub_const, sum, L_apply, L_mul, R_apply, R_mul, contMDiffAt_add_left, contMDiffAt_add_right, contMDiffAt_finprod, contMDiffAt_finset_prod, contMDiffAt_finset_prod', contMDiffAt_finset_sum, contMDiffAt_finset_sum', contMDiffAt_finsum, contMDiffAt_mul_left, contMDiffAt_mul_right, contMDiffOn_finprod, contMDiffOn_finset_prod, contMDiffOn_finset_prod', contMDiffOn_finset_sum, contMDiffOn_finset_sum', contMDiffOn_finsum, contMDiffWithinAt_finprod, contMDiffWithinAt_finset_prod, contMDiffWithinAt_finset_prod', contMDiffWithinAt_finset_sum, contMDiffWithinAt_finset_sum', contMDiffWithinAt_finsum, contMDiff_add, contMDiff_add_left, contMDiff_add_right, contMDiff_finprod, contMDiff_finprod_cond, contMDiff_finset_prod, contMDiff_finset_prod', contMDiff_finset_sum, contMDiff_finset_sum', contMDiff_finsum, contMDiff_finsum_cond, contMDiff_mul, contMDiff_mul_left, contMDiff_mul_right, contMDiff_nsmul, contMDiff_pow, continuousAdd_of_contMDiffAdd, continuousMul_of_contMDiffMul, instAddMonoidHomClassContMDiffAddMonoidMorphism, instContMDiffAddOfNatWithTopENat, instContMDiffAddOfNatWithTopENatOfContinuousAdd, instContMDiffAddOfSomeENatTopOfLEInfty, instContMDiffAddOfTopWithTopENat, instContMDiffAddSelf, instContMDiffMulOfNatWithTopENat, instContMDiffMulOfNatWithTopENatOfContinuousMul, instContMDiffMulOfSomeENatTopOfLEInfty, instContMDiffMulOfTopWithTopENat, instContinuousMapClassContMDiffAddMonoidMorphism, instContinuousMapClassContMDiffMonoidMorphism, instMonoidHomClassContMDiffMonoidMorphism, mdifferentiableAt_add_left, mdifferentiableAt_add_right, mdifferentiableAt_mul_left, mdifferentiableAt_mul_right, mdifferentiable_add_left, mdifferentiable_add_right, mdifferentiable_mul_left, mdifferentiable_mul_right, smoothLeftMul_one, smoothRightMul_one
107
Total124

ContMDiff

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalContMDiffPi.instAddβ€”ContMDiffAt.add
div_const πŸ“–mathematicalContMDiffDivInvMonoid.toDivβ€”ContMDiffAt.div_const
mul πŸ“–mathematicalContMDiffPi.instMulβ€”ContMDiffAt.mul
nsmul πŸ“–mathematicalContMDiffAddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”ContMDiffAt.nsmul
pow πŸ“–mathematicalContMDiffMonoid.toNatPow
CommMonoid.toMonoid
β€”ContMDiffAt.pow
prod πŸ“–mathematicalContMDiffFinset.prodβ€”ContMDiffAt.prod
sub_const πŸ“–mathematicalContMDiffSubNegMonoid.toSubβ€”ContMDiffAt.sub_const
sum πŸ“–mathematicalContMDiffFinset.sumβ€”ContMDiffAt.sum

ContMDiffAdd

Theorems

NameKindAssumesProvesValidatesDepends On
contMDiff_add πŸ“–mathematicalβ€”ContMDiff
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelProd
instTopologicalSpaceModelProd
ModelWithCorners.prod
instTopologicalSpaceProd
prodChartedSpace
β€”β€”
of_le πŸ“–mathematicalWithTop
ENat
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ContMDiffAddβ€”IsManifold.of_le
toIsManifold
ContMDiff.of_le
contMDiff_add
prod πŸ“–mathematicalβ€”ContMDiffAdd
ModelProd
instTopologicalSpaceModelProd
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelWithCorners.prod
Prod.instAdd
instTopologicalSpaceProd
prodChartedSpace
β€”IsManifold.prod
toIsManifold
ContMDiff.prodMk
ContMDiff.add
ContMDiff.comp
contMDiff_fst
contMDiff_snd
toIsManifold πŸ“–mathematicalβ€”IsManifoldβ€”β€”

ContMDiffAddMonoidMorphism

Definitions

NameCategoryTheorems
toAddMonoidHom πŸ“–CompOp
1 mathmath: contMDiff_toFun

Theorems

NameKindAssumesProvesValidatesDepends On
contMDiff_toFun πŸ“–mathematicalβ€”ContMDiff
ZeroHom.toFun
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidHom.toZeroHom
toAddMonoidHom
β€”β€”

ContMDiffAt

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalContMDiffAtPi.instAddβ€”ContMDiffWithinAt.add
div_const πŸ“–mathematicalContMDiffAtDivInvMonoid.toDivβ€”ContMDiffWithinAt.div_const
mul πŸ“–mathematicalContMDiffAtPi.instMulβ€”ContMDiffWithinAt.mul
nsmul πŸ“–mathematicalContMDiffAtAddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”ContMDiffWithinAt.nsmul
pow πŸ“–mathematicalContMDiffAtMonoid.toNatPow
CommMonoid.toMonoid
β€”ContMDiffWithinAt.pow
prod πŸ“–mathematicalContMDiffAtFinset.prodβ€”ContMDiffWithinAt.prod
sub_const πŸ“–mathematicalContMDiffAtSubNegMonoid.toSubβ€”ContMDiffWithinAt.sub_const
sum πŸ“–mathematicalContMDiffAtFinset.sumβ€”contMDiffWithinAt_univ
ContMDiffWithinAt.sum

ContMDiffMonoidMorphism

Definitions

NameCategoryTheorems
toMonoidHom πŸ“–CompOp
1 mathmath: contMDiff_toFun

Theorems

NameKindAssumesProvesValidatesDepends On
contMDiff_toFun πŸ“–mathematicalβ€”ContMDiff
OneHom.toFun
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
MonoidHom.toOneHom
toMonoidHom
β€”β€”

ContMDiffMul

Theorems

NameKindAssumesProvesValidatesDepends On
contMDiff_mul πŸ“–mathematicalβ€”ContMDiff
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelProd
instTopologicalSpaceModelProd
ModelWithCorners.prod
instTopologicalSpaceProd
prodChartedSpace
β€”β€”
of_le πŸ“–mathematicalWithTop
ENat
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ContMDiffMulβ€”IsManifold.of_le
toIsManifold
ContMDiff.of_le
contMDiff_mul
prod πŸ“–mathematicalβ€”ContMDiffMul
ModelProd
instTopologicalSpaceModelProd
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelWithCorners.prod
Prod.instMul
instTopologicalSpaceProd
prodChartedSpace
β€”IsManifold.prod
toIsManifold
ContMDiff.prodMk
ContMDiff.mul
ContMDiff.comp
contMDiff_fst
contMDiff_snd
toIsManifold πŸ“–mathematicalβ€”IsManifoldβ€”β€”

ContMDiffOn

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalContMDiffOnPi.instAddβ€”ContMDiffWithinAt.add
div_const πŸ“–mathematicalContMDiffOnDivInvMonoid.toDivβ€”ContMDiffWithinAt.div_const
mul πŸ“–mathematicalContMDiffOnPi.instMulβ€”ContMDiffWithinAt.mul
nsmul πŸ“–mathematicalContMDiffOnAddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”ContMDiffWithinAt.nsmul
pow πŸ“–mathematicalContMDiffOnMonoid.toNatPow
CommMonoid.toMonoid
β€”ContMDiffWithinAt.pow
sub_const πŸ“–mathematicalContMDiffOnSubNegMonoid.toSubβ€”ContMDiffWithinAt.sub_const

ContMDiffWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalContMDiffWithinAtPi.instAddβ€”ContMDiffAt.comp_contMDiffWithinAt
ContMDiff.contMDiffAt
contMDiff_add
prodMk
div_const πŸ“–mathematicalContMDiffWithinAtDivInvMonoid.toDivβ€”div_eq_mul_inv
mul
contMDiffWithinAt_const
mul πŸ“–mathematicalContMDiffWithinAtPi.instMulβ€”ContMDiffAt.comp_contMDiffWithinAt
ContMDiff.contMDiffAt
contMDiff_mul
prodMk
nsmul πŸ“–mathematicalContMDiffWithinAtAddMonoid.toNatSMul
AddCommMonoid.toAddMonoid
β€”ContMDiffAt.comp_contMDiffWithinAt
ContMDiff.contMDiffAt
contMDiff_nsmul
pow πŸ“–mathematicalContMDiffWithinAtMonoid.toNatPow
CommMonoid.toMonoid
β€”ContMDiffAt.comp_contMDiffWithinAt
ContMDiff.contMDiffAt
contMDiff_pow
prod πŸ“–mathematicalContMDiffWithinAtFinset.prodβ€”Finset.induction_on
Finset.prod_insert
mul
Finset.mem_insert_self
Finset.mem_insert_of_mem
sub_const πŸ“–mathematicalContMDiffWithinAtSubNegMonoid.toSubβ€”sub_eq_add_neg
add
contMDiffWithinAt_const
sum πŸ“–mathematicalContMDiffWithinAtFinset.sumβ€”Finset.induction_on
contMDiffWithinAt_const
Finset.sum_insert
add
Finset.mem_insert_self
Finset.mem_insert_of_mem

LibraryNote

Definitions

NameCategoryTheorems
Design_choices_about_smooth_algebraic_structures πŸ“–CompOpβ€”

LieGroup

Definitions

NameCategoryTheorems
Β«term𝑳» πŸ“–CompOpβ€”
Β«term𝑹» πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
ContMDiffAdd πŸ“–CompData
9 mathmath: instContMDiffAddOfNatWithTopENatOfContinuousAdd, ContMDiffAdd.prod, instContMDiffAddSelf, ContMDiffRing.toContMDiffAdd, instContMDiffAddOfSomeENatTopOfLEInfty, LieAddGroup.toContMDiffAdd, instContMDiffAddOfTopWithTopENat, ContMDiffAdd.of_le, instContMDiffAddOfNatWithTopENat
ContMDiffAddMonoidMorphism πŸ“–CompData
2 mathmath: instContinuousMapClassContMDiffAddMonoidMorphism, instAddMonoidHomClassContMDiffAddMonoidMorphism
ContMDiffMonoidMorphism πŸ“–CompData
2 mathmath: instContinuousMapClassContMDiffMonoidMorphism, instMonoidHomClassContMDiffMonoidMorphism
ContMDiffMul πŸ“–CompData
8 mathmath: ContMDiffMul.prod, ContMDiffMul.of_le, instContMDiffMulOfSomeENatTopOfLEInfty, instContMDiffMulOfNatWithTopENat, ContMDiffRing.toContMDiffMul, instContMDiffMulOfNatWithTopENatOfContinuousMul, instContMDiffMulOfTopWithTopENat, LieGroup.toContMDiffMul
instFunLikeContMDiffAddMonoidMorphism πŸ“–CompOp
2 mathmath: instContinuousMapClassContMDiffAddMonoidMorphism, instAddMonoidHomClassContMDiffAddMonoidMorphism
instFunLikeContMDiffMonoidMorphism πŸ“–CompOp
2 mathmath: instContinuousMapClassContMDiffMonoidMorphism, instMonoidHomClassContMDiffMonoidMorphism
instInhabitedContMDiffAddMonoidMorphism πŸ“–CompOpβ€”
instInhabitedContMDiffMonoidMorphism πŸ“–CompOpβ€”
instOneContMDiffMonoidMorphism πŸ“–CompOpβ€”
instZeroContMDiffAddMonoidMorphism πŸ“–CompOpβ€”
smoothLeftMul πŸ“–CompOp
8 mathmath: LeftInvariantDerivation.left_invariant', LeftInvariantDerivation.left_invariant, LeftInvariantDerivation.comp_L, L_mul, LeftInvariantDerivation.left_invariant'', smoothLeftMul_one, L_apply, LeftInvariantDerivation.evalAt_mul
smoothRightMul πŸ“–CompOp
3 mathmath: smoothRightMul_one, R_mul, R_apply

Theorems

NameKindAssumesProvesValidatesDepends On
L_apply πŸ“–mathematicalβ€”DFunLike.coe
ContMDiffMap
WithTop.some
ENat
Top.top
instTopENat
ContMDiffMap.instFunLike
smoothLeftMul
β€”β€”
L_mul πŸ“–mathematicalβ€”smoothLeftMul
Semigroup.toMul
ContMDiffMap.comp
WithTop.some
ENat
Top.top
instTopENat
β€”ContMDiffMap.ext
mul_assoc
R_apply πŸ“–mathematicalβ€”DFunLike.coe
ContMDiffMap
WithTop.some
ENat
Top.top
instTopENat
ContMDiffMap.instFunLike
smoothRightMul
β€”β€”
R_mul πŸ“–mathematicalβ€”smoothRightMul
Semigroup.toMul
ContMDiffMap.comp
WithTop.some
ENat
Top.top
instTopENat
β€”ContMDiffMap.ext
mul_assoc
contMDiffAt_add_left πŸ“–mathematicalβ€”ContMDiffAtβ€”ContMDiff.contMDiffAt
contMDiff_add_left
contMDiffAt_add_right πŸ“–mathematicalβ€”ContMDiffAtβ€”ContMDiff.contMDiffAt
contMDiff_add_right
contMDiffAt_finprod πŸ“–mathematicalLocallyFinite
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
ContMDiffAt
finprodβ€”contMDiffWithinAt_finprod
contMDiffAt_finset_prod πŸ“–mathematicalContMDiffAtFinset.prodβ€”contMDiffWithinAt_finset_prod
contMDiffAt_finset_prod' πŸ“–mathematicalContMDiffAtFinset.prod
Pi.commMonoid
β€”contMDiffWithinAt_finset_prod'
contMDiffAt_finset_sum πŸ“–mathematicalContMDiffAtFinset.sumβ€”contMDiffWithinAt_finset_sum
contMDiffAt_finset_sum' πŸ“–mathematicalContMDiffAtFinset.sum
Pi.addCommMonoid
β€”contMDiffWithinAt_finset_sum'
contMDiffAt_finsum πŸ“–mathematicalLocallyFinite
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
ContMDiffAt
finsumβ€”contMDiffWithinAt_finsum
contMDiffAt_mul_left πŸ“–mathematicalβ€”ContMDiffAtβ€”ContMDiff.contMDiffAt
contMDiff_mul_left
contMDiffAt_mul_right πŸ“–mathematicalβ€”ContMDiffAtβ€”ContMDiff.contMDiffAt
contMDiff_mul_right
contMDiffOn_finprod πŸ“–mathematicalLocallyFinite
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
ContMDiffOn
finprodβ€”contMDiffWithinAt_finprod
contMDiffOn_finset_prod πŸ“–mathematicalContMDiffOnFinset.prodβ€”contMDiffWithinAt_finset_prod
contMDiffOn_finset_prod' πŸ“–mathematicalContMDiffOnFinset.prod
Pi.commMonoid
β€”contMDiffWithinAt_finset_prod'
contMDiffOn_finset_sum πŸ“–mathematicalContMDiffOnFinset.sumβ€”contMDiffWithinAt_finset_sum
contMDiffOn_finset_sum' πŸ“–mathematicalContMDiffOnFinset.sum
Pi.addCommMonoid
β€”contMDiffWithinAt_finset_sum'
contMDiffOn_finsum πŸ“–mathematicalLocallyFinite
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
ContMDiffOn
finsumβ€”contMDiffWithinAt_finsum
contMDiffWithinAt_finprod πŸ“–mathematicalLocallyFinite
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
ContMDiffWithinAt
finprodβ€”finprod_eventually_eq_prod
ContMDiffWithinAt.congr_of_eventuallyEq
ContMDiffWithinAt.prod
eventually_nhdsWithin_of_eventually_nhds
Filter.Eventually.self_of_nhds
contMDiffWithinAt_finset_prod πŸ“–mathematicalContMDiffWithinAtFinset.prodβ€”contMDiffWithinAt_finset_prod'
contMDiffWithinAt_finset_prod' πŸ“–mathematicalContMDiffWithinAtFinset.prod
Pi.commMonoid
β€”Finset.prod_induction
ContMDiffWithinAt.mul
contMDiffWithinAt_const
contMDiffWithinAt_finset_sum πŸ“–mathematicalContMDiffWithinAtFinset.sumβ€”Finset.sum_apply
contMDiffWithinAt_finset_sum'
contMDiffWithinAt_finset_sum' πŸ“–mathematicalContMDiffWithinAtFinset.sum
Pi.addCommMonoid
β€”Finset.sum_induction
ContMDiffWithinAt.add
contMDiffWithinAt_const
contMDiffWithinAt_finsum πŸ“–mathematicalLocallyFinite
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
ContMDiffWithinAt
finsumβ€”finsum_eventually_eq_sum
ContMDiffWithinAt.congr_of_eventuallyEq
ContMDiffWithinAt.sum
eventually_nhdsWithin_of_eventually_nhds
Filter.Eventually.self_of_nhds
contMDiff_add πŸ“–mathematicalβ€”ContMDiff
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelProd
instTopologicalSpaceModelProd
ModelWithCorners.prod
instTopologicalSpaceProd
prodChartedSpace
β€”ContMDiffAdd.contMDiff_add
contMDiff_add_left πŸ“–mathematicalβ€”ContMDiffβ€”ContMDiff.add
contMDiff_const
contMDiff_id
contMDiff_add_right πŸ“–mathematicalβ€”ContMDiffβ€”ContMDiff.add
contMDiff_id
contMDiff_const
contMDiff_finprod πŸ“–mathematicalContMDiff
LocallyFinite
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprodβ€”contMDiffAt_finprod
contMDiff_finprod_cond πŸ“–mathematicalContMDiff
LocallyFinite
Function.mulSupport
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
CommMonoid.toMonoid
finprodβ€”contMDiff_finprod
LocallyFinite.comp_injective
Subtype.coe_injective
contMDiff_finset_prod πŸ“–mathematicalContMDiffFinset.prodβ€”contMDiffAt_finset_prod
contMDiff_finset_prod' πŸ“–mathematicalContMDiffFinset.prod
Pi.commMonoid
β€”contMDiffAt_finset_prod'
contMDiff_finset_sum πŸ“–mathematicalContMDiffFinset.sumβ€”contMDiffAt_finset_sum
contMDiff_finset_sum' πŸ“–mathematicalContMDiffFinset.sum
Pi.addCommMonoid
β€”contMDiffAt_finset_sum'
contMDiff_finsum πŸ“–mathematicalContMDiff
LocallyFinite
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsumβ€”contMDiffAt_finsum
contMDiff_finsum_cond πŸ“–mathematicalContMDiff
LocallyFinite
Function.support
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
finsumβ€”finsum_subtype_eq_finsum_cond
contMDiff_finsum
LocallyFinite.comp_injective
Subtype.coe_injective
contMDiff_mul πŸ“–mathematicalβ€”ContMDiff
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelProd
instTopologicalSpaceModelProd
ModelWithCorners.prod
instTopologicalSpaceProd
prodChartedSpace
β€”ContMDiffMul.contMDiff_mul
contMDiff_mul_left πŸ“–mathematicalβ€”ContMDiffβ€”ContMDiff.mul
contMDiff_const
contMDiff_id
contMDiff_mul_right πŸ“–mathematicalβ€”ContMDiffβ€”ContMDiff.mul
contMDiff_id
contMDiff_const
contMDiff_nsmul πŸ“–mathematicalβ€”ContMDiff
AddMonoid.toNatSMul
β€”zero_nsmul
contMDiff_const
succ_nsmul
ContMDiff.add
contMDiff_id
contMDiff_pow πŸ“–mathematicalβ€”ContMDiff
Monoid.toNatPow
β€”pow_zero
pow_succ
ContMDiff.mul
contMDiff_id
continuousAdd_of_contMDiffAdd πŸ“–mathematicalβ€”ContinuousAddβ€”ContMDiff.continuous
contMDiff_add
continuousMul_of_contMDiffMul πŸ“–mathematicalβ€”ContinuousMulβ€”ContMDiff.continuous
contMDiff_mul
instAddMonoidHomClassContMDiffAddMonoidMorphism πŸ“–mathematicalβ€”AddMonoidHomClass
ContMDiffAddMonoidMorphism
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLikeContMDiffAddMonoidMorphism
β€”AddMonoidHom.map_add
AddMonoidHom.map_zero
instContMDiffAddOfNatWithTopENat πŸ“–mathematicalβ€”ContMDiffAdd
WithTop
ENat
WithTop.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Nat.instAtLeastTwoHAddOfNat
ContMDiffAdd.of_le
one_le_two
WithTop.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
WithTop.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
instContMDiffAddOfNatWithTopENatOfContinuousAdd πŸ“–mathematicalβ€”ContMDiffAdd
WithTop
ENat
WithTop.zero
instZeroENat
β€”IsManifold.instOfNatWithTopENat
contMDiff_zero_iff
continuous_add
instContMDiffAddOfSomeENatTopOfLEInfty πŸ“–mathematicalβ€”ContMDiffAddβ€”ContMDiffAdd.of_le
ENat.LEInfty.out
instContMDiffAddOfTopWithTopENat πŸ“–mathematicalβ€”ContMDiffAddβ€”ContMDiffAdd.of_le
le_top
instContMDiffAddSelf πŸ“–mathematicalβ€”ContMDiffAdd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
modelWithCornersSelf
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
ESeminormedAddCommMonoid.toAddCommMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
chartedSpaceSelf
β€”IsManifold.instOfTopWithTopENat
instIsManifoldModelSpace
modelWithCornersSelf_prod
chartedSpaceSelf_prod
ContDiff.contMDiff
contDiff_add
instContMDiffMulOfNatWithTopENat πŸ“–mathematicalβ€”ContMDiffMul
WithTop
ENat
WithTop.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Nat.instAtLeastTwoHAddOfNat
ContMDiffMul.of_le
one_le_two
WithTop.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
WithTop.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
instContMDiffMulOfNatWithTopENatOfContinuousMul πŸ“–mathematicalβ€”ContMDiffMul
WithTop
ENat
WithTop.zero
instZeroENat
β€”IsManifold.instOfNatWithTopENat
contMDiff_zero_iff
continuous_mul
instContMDiffMulOfSomeENatTopOfLEInfty πŸ“–mathematicalβ€”ContMDiffMulβ€”ContMDiffMul.of_le
ENat.LEInfty.out
instContMDiffMulOfTopWithTopENat πŸ“–mathematicalβ€”ContMDiffMulβ€”ContMDiffMul.of_le
le_top
instContinuousMapClassContMDiffAddMonoidMorphism πŸ“–mathematicalβ€”ContinuousMapClass
ContMDiffAddMonoidMorphism
instFunLikeContMDiffAddMonoidMorphism
β€”ContMDiff.continuous
ContMDiffAddMonoidMorphism.contMDiff_toFun
instContinuousMapClassContMDiffMonoidMorphism πŸ“–mathematicalβ€”ContinuousMapClass
ContMDiffMonoidMorphism
instFunLikeContMDiffMonoidMorphism
β€”ContMDiff.continuous
ContMDiffMonoidMorphism.contMDiff_toFun
instMonoidHomClassContMDiffMonoidMorphism πŸ“–mathematicalβ€”MonoidHomClass
ContMDiffMonoidMorphism
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLikeContMDiffMonoidMorphism
β€”MonoidHom.map_mul
MonoidHom.map_one
mdifferentiableAt_add_left πŸ“–mathematicalβ€”MDifferentiableAtβ€”ContMDiffAt.mdifferentiableAt
contMDiffAt_add_left
one_ne_zero
NeZero.charZero_one
WithTop.charZero
mdifferentiableAt_add_right πŸ“–mathematicalβ€”MDifferentiableAtβ€”ContMDiffAt.mdifferentiableAt
contMDiffAt_add_right
one_ne_zero
NeZero.charZero_one
WithTop.charZero
mdifferentiableAt_mul_left πŸ“–mathematicalβ€”MDifferentiableAtβ€”ContMDiffAt.mdifferentiableAt
contMDiffAt_mul_left
one_ne_zero
NeZero.charZero_one
WithTop.charZero
mdifferentiableAt_mul_right πŸ“–mathematicalβ€”MDifferentiableAtβ€”ContMDiffAt.mdifferentiableAt
contMDiffAt_mul_right
one_ne_zero
NeZero.charZero_one
WithTop.charZero
mdifferentiable_add_left πŸ“–mathematicalβ€”MDifferentiableβ€”ContMDiff.mdifferentiable
contMDiff_add_left
one_ne_zero
NeZero.charZero_one
WithTop.charZero
mdifferentiable_add_right πŸ“–mathematicalβ€”MDifferentiableβ€”ContMDiff.mdifferentiable
contMDiff_add_right
one_ne_zero
NeZero.charZero_one
WithTop.charZero
mdifferentiable_mul_left πŸ“–mathematicalβ€”MDifferentiableβ€”ContMDiff.mdifferentiable
contMDiff_mul_left
one_ne_zero
NeZero.charZero_one
WithTop.charZero
mdifferentiable_mul_right πŸ“–mathematicalβ€”MDifferentiableβ€”ContMDiff.mdifferentiable
contMDiff_mul_right
one_ne_zero
NeZero.charZero_one
WithTop.charZero
smoothLeftMul_one πŸ“–mathematicalβ€”DFunLike.coe
ContMDiffMap
WithTop.some
ENat
Top.top
instTopENat
ContMDiffMap.instFunLike
smoothLeftMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
β€”mul_one
smoothRightMul_one πŸ“–mathematicalβ€”DFunLike.coe
ContMDiffMap
WithTop.some
ENat
Top.top
instTopENat
ContMDiffMap.instFunLike
smoothRightMul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
β€”one_mul

---

← Back to Index