Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Geometry/Manifold/ContMDiff/Basic.lean

Statistics

MetricCount
Definitions0
Theoremscomp, comp_contMDiffOn, extend_one, extend_zero, iterate, of_comp_isOpenEmbedding, piecewise, piecewise_Iic, comp, comp_contMDiffWithinAt, comp_contMDiffWithinAt_of_eq, comp_of_eq, comp, comp', comp_contMDiff, iUnion_of_isOpen, iterate, union_of_isOpen, comp, comp', comp_of_eq, contMDiffAt_const, contMDiffAt_id, contMDiffAt_of_notMem, contMDiffAt_of_notMem_mulTSupport, contMDiffAt_of_subsingleton, contMDiffAt_one, contMDiffAt_subtype_iff, contMDiffAt_zero, contMDiffOn_const, contMDiffOn_iUnion_iff_of_isOpen, contMDiffOn_id, contMDiffOn_isOpenEmbedding_symm, contMDiffOn_of_subsingleton, contMDiffOn_one, contMDiffOn_union_iff_of_isOpen, contMDiffOn_zero, contMDiffWithinAt_const, contMDiffWithinAt_id, contMDiffWithinAt_of_notMem, contMDiffWithinAt_of_notMem_mulTSupport, contMDiffWithinAt_of_subsingleton, contMDiffWithinAt_one, contMDiffWithinAt_zero, contMDiff_const, contMDiff_id, contMDiff_inclusion, contMDiff_isOpenEmbedding, contMDiff_of_contMDiffOn_iUnion_of_isOpen, contMDiff_of_contMDiffOn_union_of_isOpen, contMDiff_of_discreteTopology, contMDiff_of_mulTSupport, contMDiff_of_subsingleton, contMDiff_of_tsupport, contMDiff_one, contMDiff_subtype_val, contMDiff_zero
57
Total57

ContMDiff

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”ContMDiffβ€”β€”contMDiffOn_univ
ContMDiffOn.comp
Set.subset_preimage_univ
comp_contMDiffOn πŸ“–β€”ContMDiff
ContMDiffOn
β€”β€”ContMDiffOn.comp
contMDiffOn
Set.subset_preimage_univ
extend_one πŸ“–mathematicalHasCompactMulSupport
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
ContMDiff
TopologicalSpace.Opens.instChartedSpace
Function.extend
Pi.instOne
β€”contMDiff_of_mulTSupport
CanLift.prf
Subtype.canLift
Subtype.coe_image_subset
HasCompactMulSupport.mulTSupport_extend_one_subset
continuous_subtype_val
contMDiffAt_subtype_iff
Function.extend_comp
Subtype.val_injective
contMDiffAt
extend_zero πŸ“–mathematicalHasCompactSupport
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
ContMDiff
TopologicalSpace.Opens.instChartedSpace
Function.extend
Pi.instZero
β€”contMDiff_of_tsupport
CanLift.prf
Subtype.canLift
Subtype.coe_image_subset
HasCompactSupport.tsupport_extend_zero_subset
continuous_subtype_val
contMDiffAt_subtype_iff
Function.extend_comp
Subtype.val_injective
contMDiffAt
iterate πŸ“–mathematicalContMDiffNat.iterateβ€”contMDiffOn_univ
ContMDiffOn.iterate
Set.mapsTo_univ
of_comp_isOpenEmbedding πŸ“–mathematicalTopology.IsOpenEmbedding
ContMDiff
chartedSpaceSelf
Topology.IsOpenEmbedding.singletonChartedSpaceβ€”Topology.IsOpenEmbedding.toOpenPartialHomeomorph_left_inv
ContMDiffOn.comp_contMDiff
contMDiffOn_isOpenEmbedding_symm
piecewise πŸ“–mathematicalContMDiff
Filter.EventuallyEq
nhds
Set.piecewiseβ€”ContMDiffAt.congr_of_eventuallyEq
Filter.mp_mem
IsOpen.mem_nhds
isOpen_interior
Filter.univ_mem'
Set.piecewise_eq_of_mem
interior_subset
IsClosed.isOpen_compl
isClosed_closure
Set.piecewise_eq_of_notMem
Mathlib.Tactic.Contrapose.contrapose₃
subset_closure
piecewise_Iic πŸ“–mathematicalContMDiff
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.normedAddCommGroup
NormedField.toNormedSpace
NontriviallyNormedField.toNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
modelWithCornersSelf
Real.pseudoMetricSpace
chartedSpaceSelf
Filter.EventuallyEq
nhds
Set.piecewise
Set.Iic
Real.instPreorder
Set.decidableMemIic
Real.decidableLE
β€”piecewise
frontier_Iic'
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial

ContMDiffAt

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”ContMDiffAtβ€”β€”ContMDiffWithinAt.comp
Set.mapsTo_univ
comp_contMDiffWithinAt πŸ“–β€”ContMDiffAt
ContMDiffWithinAt
β€”β€”ContMDiffWithinAt.comp
Set.mapsTo_univ
comp_contMDiffWithinAt_of_eq πŸ“–β€”ContMDiffAt
ContMDiffWithinAt
β€”β€”comp_contMDiffWithinAt
comp_of_eq πŸ“–β€”ContMDiffAtβ€”β€”comp

ContMDiffOn

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”ContMDiffOn
Set
Set.instHasSubset
Set.preimage
β€”β€”ContMDiffWithinAt.comp
comp' πŸ“–mathematicalContMDiffOnSet
Set.instInter
Set.preimage
β€”comp
mono
Set.inter_subset_left
Set.inter_subset_right
comp_contMDiff πŸ“–β€”ContMDiffOn
ContMDiff
Set
Set.instMembership
β€”β€”contMDiffOn_univ
comp
ContMDiff.contMDiffOn
iUnion_of_isOpen πŸ“–mathematicalContMDiffOn
IsOpen
Set.iUnionβ€”ContMDiffAt.contMDiffWithinAt
contMDiffAt
IsOpen.mem_nhds
iterate πŸ“–mathematicalContMDiffOn
Set.MapsTo
Nat.iterateβ€”contMDiffOn_id
comp
union_of_isOpen πŸ“–mathematicalContMDiffOn
IsOpen
Set
Set.instUnion
β€”ContMDiffAt.contMDiffWithinAt
ContMDiffWithinAt.contMDiffAt
IsOpen.mem_nhds

ContMDiffWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”ContMDiffWithinAt
Set.MapsTo
β€”β€”contMDiffWithinAt_iff
ContinuousWithinAt.comp
ModelWithCorners.left_inv
OpenPartialHomeomorph.left_inv
Filter.mp_mem
inter_mem_nhdsWithin
extChartAt_source_mem_nhds
ContinuousWithinAt.tendsto
Filter.univ_mem'
PartialEquiv.left_inv
ContDiffWithinAt.congr_of_eventuallyEq
ContDiffWithinAt.mono_of_mem_nhdsWithin
ContDiffWithinAt.comp
ContDiffWithinAt.mono
Set.inter_subset_right
Set.MapsTo.mono_left
Set.mapsTo_preimage
Set.inter_subset_left
Filter.inter_mem
Set.mem_range_self
self_mem_nhdsWithin
comp' πŸ“–mathematicalContMDiffWithinAtSet
Set.instInter
Set.preimage
β€”comp
mono
Set.inter_subset_left
Set.inter_subset_right
comp_of_eq πŸ“–β€”ContMDiffWithinAt
Set.MapsTo
β€”β€”comp

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
contMDiffAt_const πŸ“–mathematicalβ€”ContMDiffAtβ€”ContMDiff.contMDiffAt
contMDiff_const
contMDiffAt_id πŸ“–mathematicalβ€”ContMDiffAtβ€”ContMDiff.contMDiffAt
contMDiff_id
contMDiffAt_of_notMem πŸ“–mathematicalSet
Set.instMembership
tsupport
ContMDiffAtβ€”contMDiffWithinAt_of_notMem
contMDiffAt_of_notMem_mulTSupport πŸ“–mathematicalSet
Set.instMembership
mulTSupport
ContMDiffAtβ€”contMDiffWithinAt_of_notMem_mulTSupport
contMDiffAt_of_subsingleton πŸ“–mathematicalβ€”ContMDiffAtβ€”ContMDiff.contMDiffAt
contMDiff_of_subsingleton
contMDiffAt_one πŸ“–mathematicalβ€”ContMDiffAt
Pi.instOne
β€”ContMDiff.contMDiffAt
contMDiff_one
contMDiffAt_subtype_iff πŸ“–mathematicalβ€”ContMDiffAt
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
TopologicalSpace.Opens.instChartedSpace
β€”StructureGroupoid.LocalInvariantProp.liftPropAt_iff_comp_subtype_val
contDiffWithinAt_localInvariantProp
contMDiffAt_zero πŸ“–mathematicalβ€”ContMDiffAt
Pi.instZero
β€”ContMDiff.contMDiffAt
contMDiff_zero
contMDiffOn_const πŸ“–mathematicalβ€”ContMDiffOnβ€”ContMDiff.contMDiffOn
contMDiff_const
contMDiffOn_iUnion_iff_of_isOpen πŸ“–mathematicalIsOpenContMDiffOn
Set.iUnion
β€”ContMDiffOn.mono
Set.subset_iUnion_of_subset
ContMDiffOn.iUnion_of_isOpen
contMDiffOn_id πŸ“–mathematicalβ€”ContMDiffOnβ€”ContMDiff.contMDiffOn
contMDiff_id
contMDiffOn_isOpenEmbedding_symm πŸ“–mathematicalTopology.IsOpenEmbeddingContMDiffOn
chartedSpaceSelf
Topology.IsOpenEmbedding.singletonChartedSpace
OpenPartialHomeomorph.toFun'
OpenPartialHomeomorph.symm
Topology.IsOpenEmbedding.toOpenPartialHomeomorph
Set.range
β€”contMDiffOn_iff
IsManifold.instOfTopWithTopENat
instIsManifoldModelSpace
Topology.IsOpenEmbedding.isManifold_singleton
Topology.IsOpenEmbedding.toOpenPartialHomeomorph_target
OpenPartialHomeomorph.continuousOn_symm
ContDiffOn.congr
contDiffOn_id
PartialEquiv.refl_trans
ModelWithCorners.symm.eq_1
Set.mem_preimage
Topology.IsOpenEmbedding.toOpenPartialHomeomorph_right_inv
ModelWithCorners.right_inv
Set.mem_of_subset_of_mem
extChartAt_target_subset_range
contMDiffOn_of_subsingleton πŸ“–mathematicalβ€”ContMDiffOnβ€”ContMDiff.contMDiffOn
contMDiff_of_subsingleton
contMDiffOn_one πŸ“–mathematicalβ€”ContMDiffOn
Pi.instOne
β€”ContMDiff.contMDiffOn
contMDiff_one
contMDiffOn_union_iff_of_isOpen πŸ“–mathematicalIsOpenContMDiffOn
Set
Set.instUnion
β€”ContMDiffOn.mono
Set.subset_union_left
Set.subset_union_right
ContMDiffOn.union_of_isOpen
contMDiffOn_zero πŸ“–mathematicalβ€”ContMDiffOn
Pi.instZero
β€”ContMDiff.contMDiffOn
contMDiff_zero
contMDiffWithinAt_const πŸ“–mathematicalβ€”ContMDiffWithinAtβ€”ContMDiffAt.contMDiffWithinAt
contMDiffAt_const
contMDiffWithinAt_id πŸ“–mathematicalβ€”ContMDiffWithinAtβ€”ContMDiffAt.contMDiffWithinAt
contMDiffAt_id
contMDiffWithinAt_of_notMem πŸ“–mathematicalSet
Set.instMembership
tsupport
ContMDiffWithinAtβ€”ContMDiffWithinAt.congr_of_eventuallyEq
contMDiffWithinAt_const
eventually_nhdsWithin_of_eventually_nhds
notMem_tsupport_iff_eventuallyEq
image_eq_zero_of_notMem_tsupport
contMDiffWithinAt_of_notMem_mulTSupport πŸ“–mathematicalSet
Set.instMembership
mulTSupport
ContMDiffWithinAtβ€”ContMDiffWithinAt.congr_of_eventuallyEq
contMDiffWithinAt_const
eventually_nhdsWithin_of_eventually_nhds
notMem_mulTSupport_iff_eventuallyEq
image_eq_one_of_notMem_mulTSupport
contMDiffWithinAt_of_subsingleton πŸ“–mathematicalβ€”ContMDiffWithinAtβ€”ContMDiffAt.contMDiffWithinAt
contMDiffAt_of_subsingleton
contMDiffWithinAt_one πŸ“–mathematicalβ€”ContMDiffWithinAt
Pi.instOne
β€”ContMDiffAt.contMDiffWithinAt
contMDiffAt_const
contMDiffWithinAt_zero πŸ“–mathematicalβ€”ContMDiffWithinAt
Pi.instZero
β€”ContMDiffAt.contMDiffWithinAt
contMDiffAt_const
contMDiff_const πŸ“–mathematicalβ€”ContMDiffβ€”continuousWithinAt_const
contDiffWithinAt_const
contMDiff_id πŸ“–mathematicalβ€”ContMDiffβ€”ContMDiff.of_le
StructureGroupoid.LocalInvariantProp.liftProp_id
contDiffWithinAt_localInvariantProp
contDiffWithinAtProp_id
le_top
contMDiff_inclusion πŸ“–mathematicalTopologicalSpace.Opens
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
ContMDiff
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
TopologicalSpace.Opens.instChartedSpace
TopologicalSpace.Opens.inclusion
β€”StructureGroupoid.LocalInvariantProp.liftProp_inclusion
contDiffWithinAt_localInvariantProp
Set.univ_inter
ContDiffWithinAt.congr
contDiffWithinAt_id
ModelWithCorners.rightInvOn
ModelWithCorners.left_inv
contMDiff_isOpenEmbedding πŸ“–mathematicalTopology.IsOpenEmbeddingContMDiff
Topology.IsOpenEmbedding.singletonChartedSpace
chartedSpaceSelf
β€”contMDiff_iff
IsManifold.instOfTopWithTopENat
Topology.IsOpenEmbedding.isManifold_singleton
instIsManifoldModelSpace
Topology.IsOpenEmbedding.continuous
ContDiffOn.congr
contDiffOn_id
PartialEquiv.refl_trans
Topology.IsOpenEmbedding.toOpenPartialHomeomorph_right_inv
extChartAt_target
Topology.IsOpenEmbedding.toOpenPartialHomeomorph_target
Topology.IsOpenEmbedding.toOpenPartialHomeomorph_source
OpenPartialHomeomorph.singletonChartedSpace_chartAt_eq
Set.mem_preimage
ModelWithCorners.right_inv
Set.mem_of_subset_of_mem
extChartAt_target_subset_range
contMDiff_of_contMDiffOn_iUnion_of_isOpen πŸ“–mathematicalContMDiffOn
IsOpen
Set.iUnion
Set.univ
ContMDiffβ€”contMDiffOn_univ
ContMDiffOn.iUnion_of_isOpen
contMDiff_of_contMDiffOn_union_of_isOpen πŸ“–mathematicalContMDiffOn
Set
Set.instUnion
Set.univ
IsOpen
ContMDiffβ€”contMDiffOn_univ
ContMDiffOn.union_of_isOpen
contMDiff_of_discreteTopology πŸ“–mathematicalβ€”ContMDiffβ€”ContMDiffAt.congr_of_eventuallyEq
ContMDiff.contMDiffAt
contMDiff_const
nhds_discrete
contMDiff_of_mulTSupport πŸ“–mathematicalContMDiffAtContMDiffβ€”ContMDiffAt.congr_of_eventuallyEq
contMDiffAt_const
notMem_mulTSupport_iff_eventuallyEq
contMDiff_of_subsingleton πŸ“–mathematicalβ€”ContMDiffβ€”contMDiffAt_const
contMDiff_of_tsupport πŸ“–mathematicalContMDiffAtContMDiffβ€”ContMDiffAt.congr_of_eventuallyEq
contMDiffAt_const
notMem_tsupport_iff_eventuallyEq
contMDiff_one πŸ“–mathematicalβ€”ContMDiff
Pi.instOne
β€”β€”
contMDiff_subtype_val πŸ“–mathematicalβ€”ContMDiff
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
TopologicalSpace.Opens.instChartedSpace
β€”contMDiffAt_subtype_iff
contMDiffAt_id
contMDiff_zero πŸ“–mathematicalβ€”ContMDiff
Pi.instZero
β€”contMDiff_const

---

← Back to Index