Documentation Verification Report

Transform

πŸ“ Source: Mathlib/Geometry/Manifold/IntegralCurve/Transform.lean

Statistics

MetricCount
Definitions0
Theoremscomp_add, comp_mul, comp_add, comp_mul_ne_zero, comp_add, comp_mul, isMIntegralCurveAt_comp_add, isMIntegralCurveAt_comp_mul_ne_zero, isMIntegralCurveAt_comp_sub, isMIntegralCurveOn_comp_add, isMIntegralCurveOn_comp_mul_ne_zero, isMIntegralCurveOn_comp_sub, isMIntegralCurve_comp_add, isMIntegralCurve_comp_mul_ne_zero, isMIntegralCurve_comp_sub, isMIntegralCurve_const
16
Total16

IsMIntegralCurve

Theorems

NameKindAssumesProvesValidatesDepends On
comp_add πŸ“–mathematicalIsMIntegralCurveReal
Real.instAdd
β€”isMIntegralCurve_iff_isMIntegralCurveOn
IsMIntegralCurveOn.comp_add
comp_mul πŸ“–mathematicalIsMIntegralCurveReal
Real.instMul
Pi.instSMul
TangentSpace
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
SMulZeroClass.toSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupTangentSpace
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
instTopologicalSpaceTangentSpace
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
instModuleTangentSpace
β€”isMIntegralCurve_iff_isMIntegralCurveOn
IsMIntegralCurveOn.comp_mul

IsMIntegralCurveAt

Theorems

NameKindAssumesProvesValidatesDepends On
comp_add πŸ“–mathematicalIsMIntegralCurveAtReal
Real.instAdd
Real.instSub
β€”isMIntegralCurveAt_iff'
Metric.ball.eq_1
add_sub_right_comm
IsMIntegralCurveOn.comp_add
comp_mul_ne_zero πŸ“–mathematicalIsMIntegralCurveAtReal
Real.instMul
Pi.instSMul
TangentSpace
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
SMulZeroClass.toSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupTangentSpace
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
instTopologicalSpaceTangentSpace
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
instModuleTangentSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”isMIntegralCurveAt_iff'
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.abs_pos_of_ne_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Set.ext
Set.mem_setOf_eq
Metric.mem_ball
Real.dist_eq
lt_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
abs_pos
abs_mul
Real.instIsOrderedRing
sub_mul
div_mul_cancelβ‚€
IsMIntegralCurveOn.comp_mul

IsMIntegralCurveOn

Theorems

NameKindAssumesProvesValidatesDepends On
comp_add πŸ“–mathematicalIsMIntegralCurveOnReal
Real.instAdd
setOf
Set
Set.instMembership
β€”RingHomCompTriple.ids
ContinuousLinearMap.comp_id
HasMFDerivWithinAt.comp
Continuous.continuousWithinAt
continuous_add_right
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
PartialEquiv.trans_refl
Set.range_id
Set.inter_univ
HasFDerivWithinAt.add_const
hasFDerivWithinAt_id
subset_rfl
Set.instReflSubset
comp_mul πŸ“–mathematicalIsMIntegralCurveOnReal
Real.instMul
Pi.instSMul
TangentSpace
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
SMulZeroClass.toSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupTangentSpace
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
instTopologicalSpaceTangentSpace
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
instModuleTangentSpace
setOf
Set
Set.instMembership
β€”Pi.smul_apply
ContinuousLinearMap.one_apply
RingHomCompTriple.ids
IsScalarTower.left
IsModuleTopology.toContinuousSMul
IsTopologicalSemiring.toIsModuleTopology
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
ContinuousLinearMap.smulRight_comp_smulRight
HasMFDerivWithinAt.comp
Continuous.continuousWithinAt
continuous_mul_right
IsTopologicalSemiring.toContinuousMul
PartialEquiv.trans_refl
Set.range_id
Set.inter_univ
HasFDerivWithinAt.mul_const'
hasFDerivWithinAt_id
subset_rfl
Set.instReflSubset

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isMIntegralCurveAt_comp_add πŸ“–mathematicalβ€”IsMIntegralCurveAt
Real
Real.instAdd
Real.instSub
β€”IsMIntegralCurveAt.comp_add
neg_add_cancel_right
sub_neg_eq_add
sub_add_cancel
isMIntegralCurveAt_comp_mul_ne_zero πŸ“–mathematicalβ€”IsMIntegralCurveAt
Real
Real.instMul
Pi.instSMul
TangentSpace
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
SMulZeroClass.toSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupTangentSpace
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
instTopologicalSpaceTangentSpace
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
instModuleTangentSpace
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”IsMIntegralCurveAt.comp_mul_ne_zero
mul_assoc
inv_mul_eq_div
div_self
mul_one
smul_smul
one_smul
div_inv_eq_mul
div_mul_cancelβ‚€
inv_ne_zero
isMIntegralCurveAt_comp_sub πŸ“–mathematicalβ€”IsMIntegralCurveAt
Real
Real.instSub
Real.instAdd
β€”sub_neg_eq_add
isMIntegralCurveAt_comp_add
isMIntegralCurveOn_comp_add πŸ“–mathematicalβ€”IsMIntegralCurveOn
Real
Real.instAdd
setOf
Set
Set.instMembership
β€”IsMIntegralCurveOn.comp_add
neg_add_cancel_right
isMIntegralCurveOn_comp_mul_ne_zero πŸ“–mathematicalβ€”IsMIntegralCurveOn
Real
Real.instMul
Pi.instSMul
TangentSpace
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
SMulZeroClass.toSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupTangentSpace
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
instTopologicalSpaceTangentSpace
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
instModuleTangentSpace
setOf
Set
Set.instMembership
β€”IsMIntegralCurveOn.comp_mul
mul_assoc
inv_mul_eq_div
div_self
mul_one
smul_smul
one_smul
isMIntegralCurveOn_comp_sub πŸ“–mathematicalβ€”IsMIntegralCurveOn
Real
Real.instSub
setOf
Set
Set.instMembership
β€”isMIntegralCurveOn_comp_add
isMIntegralCurve_comp_add πŸ“–mathematicalβ€”IsMIntegralCurve
Real
Real.instAdd
β€”IsMIntegralCurve.comp_add
neg_add_cancel_right
isMIntegralCurve_comp_mul_ne_zero πŸ“–mathematicalβ€”IsMIntegralCurve
Real
Real.instMul
Pi.instSMul
TangentSpace
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
SMulZeroClass.toSMul
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupTangentSpace
DistribSMul.toSMulZeroClass
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
instTopologicalSpaceTangentSpace
ESeminormedAddCommMonoid.toESeminormedAddMonoid
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
Real.semiring
ESeminormedAddCommMonoid.toAddCommMonoid
instModuleTangentSpace
β€”IsMIntegralCurve.comp_mul
mul_assoc
inv_mul_eq_div
div_self
mul_one
smul_smul
one_smul
isMIntegralCurve_comp_sub πŸ“–mathematicalβ€”IsMIntegralCurve
Real
Real.instSub
β€”isMIntegralCurve_comp_add
isMIntegralCurve_const πŸ“–mathematicalTangentSpace
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroupTangentSpace
IsMIntegralCurveβ€”IsScalarTower.left
ContinuousLinearMap.smulRight_one_eq_toSpanSingleton
ContinuousLinearMap.toSpanSingleton_zero
hasMFDerivAt_const

---

← Back to Index