Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Geometry/Manifold/IsManifold/Basic.lean

Statistics

MetricCount
DefinitionsLEInfty, IsManifold, maximalAtlas, Β«termπ“˜(_)»»), Β«termπ“˜(_,_)»»), ModelWithCorners, Boundaryless, apply, symm_apply, instCoeFunForall, ofConvexRange, ofTargetUniv, of_convex_range, of_target_univ, pi, prod, tangent, toFun', toHomeomorph, toPartialEquiv, TangentBundle, TangentSpace, contDiffGroupoid, contDiffPregroupoid, instAddCommGroupTangentSpace, instContinuousConstSMulTangentSpace, instContinuousSMulTangentSpace, instInhabitedTangentSpace, instIsTopologicalAddGroupTangentSpace, instModuleTangentSpace, instPathConnectedSpaceTangentSpaceReal, instTopologicalSpaceTangentSpace, modelWithCornersSelf
33
Theoremsmem_of_source_eq_empty, mem_of_source_eq_empty, convex_isRCLikeNormedField, out, chart_mem_maximalAtlas, compatible_of_mem_maximalAtlas, disjointUnion, empty, instLEInftyCastWithTopENat, instLEInftyOfNatWithTopENat, instLEInftyOfNatWithTopENat_1, instLEInftyOfNatWithTopENat_2, instLEInftySomeENat, instOfNatWithTopENat, instOfNatWithTopENat_1, instOfNatWithTopENat_2, instOfSomeENatTopOfLEInfty, instOfTopWithTopENat, maximalAtlas_subset_of_le, mem_maximalAtlas_iff, mem_maximalAtlas_prod, mk', of_discreteTopology, of_le, prod, subset_maximalAtlas, toHasGroupoid, range_eq_univ, continuous, continuousAt, continuousAt_symm, continuousOn_symm, continuousWithinAt, continuousWithinAt_symm, continuous_invFun, continuous_symm, continuous_toFun, convex_range, convex_range', ext, ext_iff, image_eq, image_mem_nhdsWithin, injective, isClosedEmbedding, isClosed_range, leftInverse, left_inv, locallyCompactSpace, map_nhdsWithin_eq, map_nhds_eq, mk_coe, mk_symm, nonempty_interior, nonempty_interior', preimage_image, prod_apply, prod_source, prod_symm_apply, prod_target, range_eq_closure_interior, range_eq_target, range_eq_univ, range_eq_univ_of_not_isRCLikeNormedField, range_eq_univ_prod, range_prod, range_subset_closure_interior, rightInvOn, right_inv, secondCountableTopology, source_eq, symm_comp_self, symm_continuousWithinAt_comp_right_iff, symm_map_nhdsWithin_image, symm_map_nhdsWithin_range, t1Space, target_eq, toHomeomorph_apply, toHomeomorph_symm_apply, toPartialEquiv_coe, toPartialEquiv_coe_symm, uniqueDiffOn, uniqueDiffOn_preimage, uniqueDiffOn_preimage_source, uniqueDiffWithinAt_image, isManifold_singleton, invFun, instIsManifoldSubtypeMem, isManifold_singleton, contDiffGroupoid_le, contDiffGroupoid_prod, contDiffGroupoid_zero_eq, instClosedUnderRestrictionContDiffGroupoid, instIsManifoldModelSpace, isManifold_of_contDiffOn, modelWithCornersSelf_boundaryless, modelWithCornersSelf_coe, modelWithCornersSelf_coe_symm, modelWithCornersSelf_partialEquiv, modelWithCornersSelf_prod, modelWithCorners_prod_coe, modelWithCorners_prod_coe_symm, modelWithCorners_prod_toPartialEquiv, ofSet_mem_contDiffGroupoid, symm_trans_mem_contDiffGroupoid
105
Total138

ContDiffGroupoid

Theorems

NameKindAssumesProvesValidatesDepends On
mem_of_source_eq_empty πŸ“–mathematicalPartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
Set
Set.instEmptyCollection
OpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
contDiffGroupoid
β€”Set.mem_preimage
OpenPartialHomeomorph.image_source_eq_target
Set.image_empty

ContinuousGroupoid

Theorems

NameKindAssumesProvesValidatesDepends On
mem_of_source_eq_empty πŸ“–mathematicalPartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
Set
Set.instEmptyCollection
OpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
continuousGroupoid
β€”contDiffGroupoid_zero_eq
ContDiffGroupoid.mem_of_source_eq_empty

Convex

Theorems

NameKindAssumesProvesValidatesDepends On
convex_isRCLikeNormedField πŸ“–mathematicalConvex
Real
Real.semiring
Real.partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
NormedSpace.restrictScalars
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
IsRCLikeNormedField.rclike
NontriviallyNormedField.toNormedField
RCLike.toNormedAlgebra
β€”algebraMap_smul
Real.isScalarTower
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace

ENat

Definitions

NameCategoryTheorems
LEInfty πŸ“–CompData
5 mathmath: IsManifold.instLEInftyOfNatWithTopENat_2, IsManifold.instLEInftyOfNatWithTopENat, IsManifold.instLEInftyOfNatWithTopENat_1, IsManifold.instLEInftySomeENat, IsManifold.instLEInftyCastWithTopENat

ENat.LEInfty

Theorems

NameKindAssumesProvesValidatesDepends On
out πŸ“–mathematicalβ€”WithTop
ENat
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
WithTop.some
Top.top
instTopENat
β€”β€”

IsManifold

Definitions

NameCategoryTheorems
maximalAtlas πŸ“–CompOp
12 mathmath: mem_maximalAtlas_iff, Manifold.IsImmersionAt.codChart_mem_maximalAtlas, chart_mem_maximalAtlas, Manifold.LocalPresentationAt.domChart_mem_maximalAtlas, Manifold.IsImmersionAtOfComplement.domChart_mem_maximalAtlas, Manifold.LiftSourceTargetPropertyAt.domChart_mem_maximalAtlas, Manifold.LiftSourceTargetPropertyAt.codChart_mem_maximalAtlas, maximalAtlas_subset_of_le, Manifold.IsImmersionAt.domChart_mem_maximalAtlas, subset_maximalAtlas, Manifold.IsImmersionAtOfComplement.codChart_mem_maximalAtlas, Manifold.LocalPresentationAt.codChart_mem_maximalAtlas

Theorems

NameKindAssumesProvesValidatesDepends On
chart_mem_maximalAtlas πŸ“–mathematicalβ€”OpenPartialHomeomorph
Set
Set.instMembership
maximalAtlas
chartAt
β€”StructureGroupoid.chart_mem_maximalAtlas
toHasGroupoid
compatible_of_mem_maximalAtlas πŸ“–mathematicalOpenPartialHomeomorph
Set
Set.instMembership
maximalAtlas
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
contDiffGroupoid
OpenPartialHomeomorph.trans
OpenPartialHomeomorph.symm
β€”StructureGroupoid.compatible_of_mem_maximalAtlas
disjointUnion πŸ“–mathematicalβ€”IsManifold
instTopologicalSpaceSum
ChartedSpace.sum
β€”isEmpty_or_nonempty
ContDiffGroupoid.mem_of_source_eq_empty
Set.eq_empty_of_isEmpty
instIsEmptySubtype
Topology.IsOpenEmbedding.inl
Topology.IsOpenEmbedding.inr
ChartedSpace.mem_atlas_sum
OpenPartialHomeomorph.lift_openEmbedding_trans
HasGroupoid.compatible
toHasGroupoid
Set.ext
empty πŸ“–mathematicalβ€”IsManifoldβ€”isManifold_of_contDiffOn
OpenPartialHomeomorph.trans_source
Set.eq_empty_of_isEmpty
instIsEmptySubtype
Set.preimage_empty
Set.inter_empty
Subtype.preimage_val_eq_preimage_val_iff
Set.empty_inter
instLEInftyCastWithTopENat πŸ“–mathematicalβ€”ENat.LEInfty
WithTop
ENat
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”le_top
instLEInftyOfNatWithTopENat πŸ“–mathematicalβ€”ENat.LEInftyβ€”instLEInftyCastWithTopENat
instLEInftyOfNatWithTopENat_1 πŸ“–mathematicalβ€”ENat.LEInfty
WithTop
ENat
WithTop.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”instLEInftyCastWithTopENat
instLEInftyOfNatWithTopENat_2 πŸ“–mathematicalβ€”ENat.LEInfty
WithTop
ENat
WithTop.zero
instZeroENat
β€”instLEInftyCastWithTopENat
instLEInftySomeENat πŸ“–mathematicalβ€”ENat.LEInfty
WithTop.some
ENat
β€”le_top
instOfNatWithTopENat πŸ“–mathematicalβ€”IsManifold
WithTop
ENat
WithTop.zero
instZeroENat
β€”contDiffGroupoid_zero_eq
mk'
instOfNatWithTopENat_1 πŸ“–mathematicalβ€”IsManifold
WithTop
ENat
WithTop.one
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Nat.instAtLeastTwoHAddOfNat
of_le
one_le_two
WithTop.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
WithTop.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
instOfNatWithTopENat_2 πŸ“–mathematicalβ€”IsManifold
WithTop
ENat
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithTop.addMonoidWithOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
of_le
WithTop.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
WithTop.zeroLEOneClass
IsOrderedRing.toZeroLEOneClass
WithTop.charZero
instOfSomeENatTopOfLEInfty πŸ“–mathematicalβ€”IsManifoldβ€”of_le
ENat.LEInfty.out
instOfTopWithTopENat πŸ“–mathematicalβ€”IsManifoldβ€”of_le
le_top
maximalAtlas_subset_of_le πŸ“–mathematicalWithTop
ENat
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Set
OpenPartialHomeomorph
Set.instHasSubset
maximalAtlas
β€”StructureGroupoid.maximalAtlas_mono
contDiffGroupoid_le
mem_maximalAtlas_iff πŸ“–mathematicalβ€”OpenPartialHomeomorph
Set
Set.instMembership
maximalAtlas
StructureGroupoid.maximalAtlas
contDiffGroupoid
β€”β€”
mem_maximalAtlas_prod πŸ“–mathematicalOpenPartialHomeomorph
Set
Set.instMembership
maximalAtlas
instTopologicalSpaceProd
ModelProd
instTopologicalSpaceModelProd
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelWithCorners.prod
prodChartedSpace
OpenPartialHomeomorph.prod
β€”OpenPartialHomeomorph.prod_symm_trans_prod
contDiffGroupoid_prod
mk' πŸ“–mathematicalβ€”IsManifoldβ€”β€”
of_discreteTopology πŸ“–mathematicalβ€”IsManifold
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
modelWithCornersSelf
ChartedSpace.of_discreteTopology
β€”isManifold_of_contDiffOn
ContDiff.contDiffOn
contDiff_of_subsingleton
Unique.instSubsingleton
of_le πŸ“–mathematicalWithTop
ENat
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
IsManifoldβ€”hasGroupoid_of_le
toHasGroupoid
contDiffGroupoid_le
mk'
prod πŸ“–mathematicalβ€”IsManifold
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelProd
instTopologicalSpaceModelProd
ModelWithCorners.prod
instTopologicalSpaceProd
prodChartedSpace
β€”OpenPartialHomeomorph.prod_symm
OpenPartialHomeomorph.prod_trans
StructureGroupoid.compatible
toHasGroupoid
contDiffGroupoid_prod
subset_maximalAtlas πŸ“–mathematicalβ€”Set
OpenPartialHomeomorph
Set.instHasSubset
atlas
maximalAtlas
β€”StructureGroupoid.subset_maximalAtlas
toHasGroupoid
toHasGroupoid πŸ“–mathematicalβ€”HasGroupoid
contDiffGroupoid
β€”β€”

Manifold

Definitions

NameCategoryTheorems
Β«termπ“˜(_)Β» πŸ“–Β» "API Documentation")CompOpβ€”
Β«termπ“˜(_,_)Β» πŸ“–Β» "API Documentation")CompOpβ€”

ModelWithCorners

Definitions

NameCategoryTheorems
Boundaryless πŸ“–CompData
2 mathmath: modelWithCornersSelf_boundaryless, range_eq_univ_prod
instCoeFunForall πŸ“–CompOpβ€”
ofConvexRange πŸ“–CompOpβ€”
ofTargetUniv πŸ“–CompOpβ€”
of_convex_range πŸ“–CompOpβ€”
of_target_univ πŸ“–CompOpβ€”
pi πŸ“–CompOpβ€”
prod πŸ“–CompOp
190 mathmath: contMDiff_prod_assoc, Prod.instLieGroup, Bundle.ContMDiffRiemannianMetric.contMDiff, Bundle.mdifferentiableAt_proj, Trivialization.mdifferentiableAt_section_iff, ContMDiffMul.prod, range_prod, Bundle.contMDiffOn_zeroSection, MDifferentiableAt.mfderiv_prod, mdifferentiableWithinAt_totalSpace, ContMDiffOn.prodMk, Manifold.IsImmersionOfComplement.prodMap, Trivialization.mdifferentiableOn_section_baseSet_iff, HasMFDerivWithinAt.prodMk, ContMDiffAdd.prod, ContMDiffMul.contMDiff_mul, Bundle.contMDiffWithinAt_zeroSection, mdifferentiableOn_snd, contMDiff_mul, contMDiffWithinAt_snd, contMDiffWithinAt_prod_iff, UniqueMDiffOn.prod, IsLocalFrameOn.contMDiffAt_of_coeff, contMDiff_equivTangentBundleProd_symm, mdifferentiableWithinAt_section, Trivialization.contMDiffAt_iff, Trivialization.contMDiffOn_symm_trans, Trivialization.contMDiff_iff, ContMDiffAdd.contMDiff_add, Manifold.IsSmoothEmbedding.prodMap, Trivialization.contMDiffOn_section_iff, Manifold.IsImmersionAtOfComplement.prodMap, Diffeomorph.coe_prodCongr, hasMFDerivAt_fst, writtenInExtChart_prod, Bundle.contMDiffAt_zeroSection, prod_target, MDifferentiable.prodMap, equivTangentBundleProd_apply, HasMFDerivWithinAt.prodMap, mdifferentiableAt_fst, MDifferentiableOn.prodMk, MDifferentiableAt.prodMap', ContMDiffAt.prodMap, mdifferentiableAt_totalSpace, mdifferentiableOn_fst, MDifferentiableAt.prodMk, Diffeomorph.prodCongr_symm, Trivialization.mdifferentiableAt_totalSpace_iff, mdifferentiableAt_hom_bundle, IsLocalFrameOn.mdifferentiableAt_of_coeff_aux, mdifferentiable_fst, modelWithCorners_prod_coe, Bundle.TotalSpace.isManifold, mdifferentiableAt_snd, mfderiv_prodMap, UniqueMDiffWithinAt.bundle_preimage', IsContMDiffRiemannianBundle.exists_contMDiff, prod_symm_apply, contMDiff_snd, contMDiffAt_prod_iff, tangentMap_prodSnd, HasMFDerivAt.prodMap, IsLocalFrameOn.mdifferentiableOn_of_coeff, prod_source, hasMFDerivWithinAt_fst, MDifferentiableOn.prodMap, Trivialization.contMDiffOn_localFrame_baseSet, modelWithCorners_prod_coe_symm, contMDiff_smul, Bundle.mdifferentiableWithinAt_proj, IsLocalFrameOn.contMDiffOn, MDifferentiableWithinAt.prodMk, Bundle.contMDiffWithinAt_totalSpace, Diffeomorph.coe_prodComm, Bundle.mdifferentiableOn_proj, equivTangentBundleProd_symm_apply_snd, IsLocalFrameOn.contMDiffAt, contMDiffAt_hom_bundle, ContMDiffOn.prodMap, ContMDiffRing.contMDiff_mul, contMDiff_prod_iff, FiberBundle.extChartAt, mfderiv_prod_right, Bundle.contMDiffWithinAt_proj, boundary_of_boundaryless_left, modelWithCornersSelf_prod, Bundle.contMDiffAt_totalSpace, Trivialization.contMDiffOn_section_baseSet_iff, mdifferentiable_snd, mdifferentiableAt_prod_iff, MDifferentiable.prodMk, OpenPartialHomeomorph.extend_prod, contMDiffWithinAt_fst, Bundle.contMDiffOn_proj, ContMDiffWithinAt.prodMk, Bundle.contMDiff_proj, contMDiffOn_fst, contMDiffOn_prod_iff, contMDiffAt_section_of_mem_baseSet, Manifold.IsImmersionAt.prodMap, IsManifold.prod, mfderivWithin_prodMap, UniqueMDiffWithinAt.bundle_preimage, Manifold.IsImmersion.prodMap, Bundle.mdifferentiableWithinAt_zeroSection, mfderiv_snd, modelWithCorners_prod_toPartialEquiv, Trivialization.mdifferentiableWithinAt_section_iff, Bundle.contMDiff_zeroSection, FiberBundle.extChartAt_target, contMDiffAt_localFrame_of_mem, mdifferentiableWithinAt_snd, mfderiv_prodMk, hasMFDerivWithinAt_snd, mdifferentiableAt_section, Bundle.mdifferentiable_proj, boundary_of_boundaryless_right, range_eq_univ_prod, prod_apply, ContMDiffSection.contMDiff, IsManifold.mem_maximalAtlas_prod, contMDiff_equivTangentBundleProd, Trivialization.contMDiffWithinAt_iff, UniqueMDiffOn.bundle_preimage, Bundle.contMDiffAt_section, boundary_prod, equivTangentBundleProd_eq_tangentMap_prod_tangentMap, mdifferentiable_prod_iff, mdifferentiableOn_prod_iff, mfderivWithin_prodMk, Trivialization.mdifferentiableOn_section_iff, ContMDiffAt.prodMap', tangentMap_prodFst, ContMDiffWithinAt.prodMap', mdifferentiableWithinAt_fst, Trivialization.contMDiffAt_section_iff, IsLocalFrameOn.contMDiffOn_of_coeff, BoundarylessManifold.prod, contMDiff_add, Diffeomorph.prodComm_symm, Prod.instLieAddGroup, HasMFDerivAt.prodMk, Trivialization.contMDiffOn_symm, ContMDiffAt.prodMk, Bundle.contMDiffAt_proj, Trivialization.contMDiffOn_iff, contMDiff_tangentBundleModelSpaceHomeomorph, hasMFDerivAt_snd, MDifferentiableWithinAt.prodMap, Bundle.contMDiffWithinAt_section, Bundle.mdifferentiableOn_zeroSection, Trivialization.mdifferentiableWithinAt_totalSpace_iff, ContMDiffSection.mdifferentiable', contMDiff_tangentBundleModelSpaceHomeomorph_symm, mfderiv_fst, ContMDiffSection.mdifferentiableAt, UniqueMDiffWithinAt.prod, equivTangentBundleProd_symm_apply_proj, ContMDiffSection.mdifferentiable, ContMDiffWithinAt.prodMap, Bundle.mdifferentiable_zeroSection, contMDiffAt_fst, mdifferentiableWithinAt_prod_iff, IsLocalFrameOn.mdifferentiableAt_of_coeff, tangentMap_prod_right, tangentMap_prod_left, ContMDiffSection.contMDiff_toFun, contDiffGroupoid_prod, interior_prod, contMDiffOn_snd, mfderiv_prod_left, MDifferentiableWithinAt.prodMap', mdifferentiableWithinAt_hom_bundle, IsLocalFrameOn.contMDiffAt_of_coeff_aux, Trivialization.contMDiffOn, contMDiffOn_section_of_mem_baseSetβ‚€, contMDiff_fst, Bundle.mdifferentiableAt_zeroSection, boundary_product, MDifferentiableAt.prodMap, Trivialization.mdifferentiable, ContMDiff.prodMap, contMDiffWithinAt_hom_bundle, contMDiffAt_snd, Trivialization.contMDiffWithinAt_section, extChartAt_prod, Manifold.LiftSourceTargetPropertyAt.prodMap, contMDiffOn_section_of_mem_baseSet, ContMDiff.prodMk
tangent πŸ“–CompOp
21 mathmath: TangentBundle.tangentMap_tangentBundle_pure, contMDiffWithinAt_vectorSpace_iff_contDiffWithinAt, contMDiff_addInvariantVectorField, contMDiff_mulInvariantVectorField, contMDiff_equivTangentBundleProd_symm, contMDiffAt_mulInvariantVectorField, mdifferentiableAt_addInvariantVectorField, ContMDiff.contMDiff_tangentMap, mdifferentiable_mulInvariantVectorField, contMDiff_vectorSpace_iff_contDiff, UniqueMDiffOn.tangentBundle_proj_preimage, contMDiffAt_vectorSpace_iff_contDiffAt, mdifferentiable_addInvariantVectorField, contMDiff_equivTangentBundleProd, mdifferentiableAt_mulInvariantVectorField, ContMDiffOn.contMDiffOn_tangentMapWithin, contMDiffAt_addInvariantVectorField, contMDiff_tangentBundleModelSpaceHomeomorph, contMDiff_tangentBundleModelSpaceHomeomorph_symm, contMDiffOn_vectorSpace_iff_contDiffOn, contMDiff_snd_tangentBundle_modelSpace
toFun' πŸ“–CompOp
182 mathmath: contMDiffAt_iff_of_mem_source, OpenPartialHomeomorph.extend_preimage_inter_eq, range_prod, preimage_image, SmoothBumpFunction.support_eq_symm_image, MDifferentiableWithinAt.differentiableWithinAt_mpullbackWithin_vectorField, mdifferentiableWithinAt_iff_of_mem_maximalAtlas, injective, symm_continuousWithinAt_comp_right_iff, contMDiffAt_iff_source, eventually_enorm_mfderivWithin_symm_extChartAt_lt, extChartAt_target_eventuallyEq, TangentBundle.symmL_trivializationAt, ContinuousWithinAt.extChartAt_symm_preimage_inter_range_eventuallyEq, map_extChartAt_symm_nhdsWithin, mdifferentiableOn_symm, tangentCoordChange_def, image_eq, map_extChartAt_symm_nhdsWithin', OpenPartialHomeomorph.extend_target_mem_nhdsWithin, map_extChartAt_symm_nhdsWithin_range', extChartAt_preimage_inter_eq, map_extChartAt_symm_nhdsWithin_range, map_extChartAt_nhdsWithin', inTangentCoordinates_eq_mfderiv_comp, mdifferentiableAt_iff, MDifferentiableWithinAt.differentiableWithinAt_writtenInExtChartAt, extChartAt_preimage_mem_nhdsWithin', uniqueDiffOn_preimage, hasMFDerivAt, extChartAt_target_mem_nhdsWithin, eventually_norm_mfderivWithin_symm_extChartAt_lt, extChartAt_self_apply, extChartAt_target_union_compl_range_mem_nhds_of_mem, mapsTo_extChartAt, symm_comp_self, preimage_extChartAt_eventuallyEq_compl_singleton, contMDiff_model, OpenPartialHomeomorph.extend_image_target_mem_nhds, contMDiffAt_iff_source_of_mem_source, extChartAt_target_mem_nhdsWithin_of_mem, SmoothBumpFunction.tsupport_subset_symm_image_closedBall, MDifferentiableAt.differentiableWithinAt_writtenInExtChartAt, TangentBundle.trivializationAt_apply, map_nhdsWithin_eq, modelWithCorners_prod_coe, frontier_range_modelWithCornersEuclideanHalfSpace, OpenPartialHomeomorph.continuousWithinAt_writtenInExtend_iff, OpenPartialHomeomorph.map_extend_symm_nhdsWithin, mfderiv_extChartAt_comp_mfderivWithin_extChartAt_symm, range_eq_univ_of_not_isRCLikeNormedField, toPartialEquiv_coe, OpenPartialHomeomorph.extend_target, extChartAt_self_eq, OpenPartialHomeomorph.contDiffWithinAt_extend_coord_change', contDiffWithinAtProp_self_source, OpenPartialHomeomorph.extend_coord_change_source_mem_nhdsWithin', SmoothBumpFunction.ball_subset, OpenPartialHomeomorph.extend_coord_change_source_mem_nhdsWithin, VectorField.mlieBracketWithin_def, contMDiffAt_iff, OpenPartialHomeomorph.map_extend_nhds, extChartAt_preimage_mem_nhdsWithin, symm_map_nhdsWithin_range, extChartAt_target_mem_nhdsWithin', contMDiffWithinAt_extChartAt_symm_range_self, continuousWithinAt, OpenPartialHomeomorph.extend_symm_preimage_inter_range_eventuallyEq_aux, contMDiffWithinAt_iff_source_of_mem_maximalAtlas, ext_coord_change_source, leftInverse, mdifferentiableAt, nonempty_interior, MDifferentiableAt.mfderiv, hasFDerivWithinAt_tangentCoordChange, ContinuousWithinAt.nhdsWithin_extChartAt_symm_preimage_inter_range, differentiableWithinAtProp_self_source, MDifferentiableWithinAt.mfderivWithin, contMDiffWithinAt_iff, OpenPartialHomeomorph.contDiffWithinAt_extend_coord_change, map_nhds_eq, extChartAt_target_eventuallyEq', hasMFDerivWithinAt, tangentBundleCore_coordChange, modelWithCornersEuclideanHalfSpace_zero, contDiffOn_fderiv_coord_change, SmoothBumpFunction.isClosed_symm_image_closedBall, image_mem_nhdsWithin, extChartAt_target_subset_range, map_extChartAt_nhds', mdifferentiableWithinAt_iff', OpenPartialHomeomorph.extend_target_eventuallyEq, target_eq, OpenPartialHomeomorph.extend_target', convex_range, contDiffWithinAtProp_self_target, VectorField.eventuallyEq_mpullback_mpullbackWithin_extChartAt, map_extChartAt_nhdsWithin, uniqueMDiffOn, IccRightChart_extend_top_mem_frontier, continuousAt, continuous, symm_map_nhdsWithin_image, uniqueMDiffWithinAt_iff_inter_range, nhdsWithin_extChartAt_target_eq_of_mem, VectorField.contMDiffWithinAt_mpullbackWithin_extChartAt_symm, mdifferentiableWithinAt_iff_source_of_mem_maximalAtlas, mdifferentiableWithinAt_iff, mfderiv_extChartAt_comp_mfderivWithin_extChartAt_symm', OpenPartialHomeomorph.interior_extend_target_subset_interior_range, writtenInExtChartAt_sumSwap_eventuallyEq_id, interior_range_modelWithCornersEuclideanHalfSpace, mfderivWithin_extChartAt_symm_comp_mfderiv_extChartAt', OpenPartialHomeomorph.extend_coe, OpenPartialHomeomorph.extend_symm_continuousWithinAt_comp_right_iff, mdifferentiable, range_eq_closure_interior, range_subset_closure_interior, prod_apply, transContinuousLinearEquiv_range, OpenPartialHomeomorph.map_extend_nhdsWithin, mfderivWithin_extChartAt_symm_comp_mfderiv_extChartAt, contMDiffWithinAt_iff_source, OpenPartialHomeomorph.nhdsWithin_extend_target_eq, nhdsWithin_extChartAt_target_eq, contMDiffWithinAt_iff_source_of_mem_source, contMDiffWithinAt_iff_of_mem_maximalAtlas, mdifferentiableAt_iff_source_of_mem_source, mk_coe, mdifferentiableAt_iff_of_mem_source, uniqueDiffWithinAt_image, mdifferentiableWithinAt_extChartAt_symm, mdifferentiableOn, contMDiffWithinAt_extChartAt_symm_range, contDiffWithinAt_ext_coord_change, eventually_norm_mfderivWithin_symm_extChartAt_comp_lt, OpenPartialHomeomorph.extend_preimage_mem_nhdsWithin, contMDiffOn_extend_symm, toHomeomorph_apply, extChartAt_target, mdifferentiableWithinAt_iff_source_of_mem_source, isClosed_range, modelWithCornersSelf_coe, coe_transContinuousLinearEquiv, isClosedEmbedding, range_modelWithCornersEuclideanHalfSpace, OpenPartialHomeomorph.extend_target_subset_range, contMDiffOn_model_symm, mdifferentiableWithinAt_iff_of_mem_source, OpenPartialHomeomorph.map_extend_symm_nhdsWithin_range, isInvertible_mfderivWithin_extChartAt_symm, VectorField.mlieBracketWithin_apply, VectorField.eventually_contMDiffWithinAt_mpullbackWithin_extChartAt_symm, uniqueDiffOn_preimage_source, SmoothBumpFunction.nhdsWithin_range_basis, extChartAt_target_eventuallyEq_of_mem, OpenPartialHomeomorph.extend_coord_change_source, rightInvOn, writtenInExtChartAt_sumInr_eventuallyEq_id, range_mem_nhds_isInteriorPoint, left_inv, OpenPartialHomeomorph.extend_symm_preimage_inter_range_eventuallyEq, isBoundaryPoint_iff, OpenPartialHomeomorph.mapsTo_extend, range_eq_univ, extChartAt_coe, writtenInExtChartAt_sumInl_eventuallyEq_id, UniqueMDiffOn.uniqueDiffWithinAt_range_inter, writtenInExtChartAt_comp, map_extChartAt_nhds, IccLeftChart_extend_bot_mem_frontier, uniqueDiffOn, differentiableWithinAtProp_self_target, contMDiffWithinAt_iff_of_mem_source, nhdsWithin_extChartAt_target_eq', Boundaryless.range_eq_univ, SmoothBumpFunction.image_eq_inter_preimage_of_subset_support, SmoothBumpFunction.closedBall_subset, tangentBundleCore_coordChange_achart, SmoothBumpFunction.isCompact_symm_image_closedBall, mdifferentiableWithinAt, SmoothBumpFunction.ball_inter_range_eq_ball_inter_target
toHomeomorph πŸ“–CompOp
2 mathmath: toHomeomorph_apply, toHomeomorph_symm_apply
toPartialEquiv πŸ“–CompOp
14 mathmath: continuous_invFun, prod_target, source_eq, ext_iff, toPartialEquiv_coe, prod_source, range_eq_target, target_eq, continuous_toFun, modelWithCorners_prod_toPartialEquiv, convex_range', modelWithCornersSelf_partialEquiv, nonempty_interior', toPartialEquiv_coe_symm

Theorems

NameKindAssumesProvesValidatesDepends On
continuous πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
toFun'
β€”continuous_toFun
continuousAt πŸ“–mathematicalβ€”ContinuousAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
toFun'
β€”Continuous.continuousAt
continuous
continuousAt_symm πŸ“–mathematicalβ€”ContinuousAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
PartialEquiv.toFun
symm
β€”Continuous.continuousAt
continuous_symm
continuousOn_symm πŸ“–mathematicalβ€”ContinuousOn
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
PartialEquiv.toFun
symm
β€”Continuous.continuousOn
continuous_symm
continuousWithinAt πŸ“–mathematicalβ€”ContinuousWithinAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
toFun'
β€”ContinuousAt.continuousWithinAt
continuousAt
continuousWithinAt_symm πŸ“–mathematicalβ€”ContinuousWithinAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
PartialEquiv.toFun
symm
β€”Continuous.continuousWithinAt
continuous_symm
continuous_invFun πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
PartialEquiv.invFun
toPartialEquiv
β€”β€”
continuous_symm πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
PartialEquiv.toFun
symm
β€”continuous_invFun
continuous_toFun πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
PartialEquiv.toFun
toPartialEquiv
β€”β€”
convex_range πŸ“–mathematicalβ€”Convex
Real
Real.semiring
Real.partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
Set.range
toFun'
β€”convex_range'
algebraMap_smul
Real.isScalarTower
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
range_eq_univ_of_not_isRCLikeNormedField
convex_range' πŸ“–mathematicalβ€”IsRCLikeNormedField
NontriviallyNormedField.toNormedField
Convex
Real
Real.semiring
Real.partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
NormedSpace.restrictScalars
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
IsRCLikeNormedField.rclike
RCLike.toNormedAlgebra
Set.range
PartialEquiv.toFun
toPartialEquiv
Set
Set.univ
β€”β€”
ext πŸ“–β€”PartialEquiv.toFun
toPartialEquiv
PartialEquiv.invFun
PartialEquiv.source
PartialEquiv.target
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”PartialEquiv.toFun
toPartialEquiv
PartialEquiv.invFun
PartialEquiv.source
PartialEquiv.target
β€”ext
image_eq πŸ“–mathematicalβ€”Set.image
toFun'
Set
Set.instInter
Set.preimage
PartialEquiv.toFun
symm
Set.range
β€”PartialEquiv.image_eq_target_inter_inv_preimage
source_eq
Set.subset_univ
Set.inter_comm
target_eq
toPartialEquiv_coe_symm
image_mem_nhdsWithin πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
toFun'
Set.range
Set.image
β€”Filter.image_mem_map
map_nhds_eq
injective πŸ“–mathematicalβ€”toFun'β€”leftInverse
isClosedEmbedding πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
toFun'
β€”Function.LeftInverse.isClosedEmbedding
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
leftInverse
continuous_symm
continuous
isClosed_range πŸ“–mathematicalβ€”IsClosed
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.range
toFun'
β€”Topology.IsClosedEmbedding.isClosed_range
isClosedEmbedding
leftInverse πŸ“–mathematicalβ€”PartialEquiv.toFun
symm
toFun'
β€”left_inv
left_inv πŸ“–mathematicalβ€”PartialEquiv.toFun
symm
toFun'
β€”PartialEquiv.left_inv'
source_eq
locallyCompactSpace πŸ“–mathematicalβ€”LocallyCompactSpaceβ€”symm_map_nhdsWithin_range
Filter.HasBasis.map
Filter.HasBasis.inf_principal
compact_basis_nhds
LocallyCompactSpace.of_hasBasis
IsCompact.image
IsCompact.inter_right
isClosed_range
continuous_symm
map_nhdsWithin_eq πŸ“–mathematicalβ€”Filter.map
toFun'
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.image
β€”Topology.IsEmbedding.map_nhdsWithin_eq
Topology.IsClosedEmbedding.isEmbedding
isClosedEmbedding
map_nhds_eq πŸ“–mathematicalβ€”Filter.map
toFun'
nhds
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.range
β€”Topology.IsEmbedding.map_nhds_eq
Topology.IsClosedEmbedding.isEmbedding
isClosedEmbedding
mk_coe πŸ“–mathematicalPartialEquiv.source
Set.univ
IsRCLikeNormedField
NontriviallyNormedField.toNormedField
Convex
Real
Real.semiring
Real.partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
NormedSpace.restrictScalars
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
IsRCLikeNormedField.rclike
RCLike.toNormedAlgebra
Set.range
PartialEquiv.toFun
Set
Set.Nonempty
interior
Continuous
PartialEquiv.invFun
toFun'β€”β€”
mk_symm πŸ“–mathematicalPartialEquiv.source
Set.univ
IsRCLikeNormedField
NontriviallyNormedField.toNormedField
Convex
Real
Real.semiring
Real.partialOrder
ESeminormedAddCommMonoid.toAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
ENormedAddCommMonoid.toESeminormedAddCommMonoid
NormedAddCommGroup.toENormedAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
ESeminormedAddMonoid.toAddMonoid
ESeminormedAddCommMonoid.toESeminormedAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Real.instMonoid
Module.toDistribMulAction
NormedSpace.toModule
Real.normedField
NormedSpace.restrictScalars
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
IsRCLikeNormedField.rclike
RCLike.toNormedAlgebra
Set.range
PartialEquiv.toFun
Set
Set.Nonempty
interior
Continuous
PartialEquiv.invFun
symm
PartialEquiv.symm
β€”β€”
nonempty_interior πŸ“–mathematicalβ€”Set.Nonempty
interior
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.range
toFun'
β€”nonempty_interior'
nonempty_interior' πŸ“–mathematicalβ€”Set.Nonempty
interior
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
Set.range
PartialEquiv.toFun
toPartialEquiv
β€”β€”
preimage_image πŸ“–mathematicalβ€”Set.preimage
toFun'
Set.image
β€”Function.Injective.preimage_image
injective
prod_apply πŸ“–mathematicalβ€”toFun'
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelProd
instTopologicalSpaceModelProd
prod
β€”β€”
prod_source πŸ“–mathematicalβ€”PartialEquiv.source
ModelProd
toPartialEquiv
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
instTopologicalSpaceModelProd
prod
setOf
Set
Set.instMembership
β€”β€”
prod_symm_apply πŸ“–mathematicalβ€”PartialEquiv.toFun
ModelProd
symm
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
instTopologicalSpaceModelProd
prod
β€”β€”
prod_target πŸ“–mathematicalβ€”PartialEquiv.target
ModelProd
toPartialEquiv
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
instTopologicalSpaceModelProd
prod
PartialEquiv.prod
β€”β€”
range_eq_closure_interior πŸ“–mathematicalβ€”Set.range
toFun'
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
interior
β€”Set.Subset.antisymm
range_subset_closure_interior
IsClosed.closure_interior_subset
isClosed_range
range_eq_target πŸ“–mathematicalβ€”Set.range
PartialEquiv.toFun
toPartialEquiv
PartialEquiv.target
β€”PartialEquiv.image_source_eq_target
source_eq
Set.image_univ
range_eq_univ πŸ“–mathematicalβ€”Set.range
toFun'
Set.univ
β€”Boundaryless.range_eq_univ
range_eq_univ_of_not_isRCLikeNormedField πŸ“–mathematicalIsRCLikeNormedField
NontriviallyNormedField.toNormedField
Set.range
toFun'
Set.univ
β€”convex_range'
range_eq_univ_prod πŸ“–mathematicalβ€”Boundaryless
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelProd
instTopologicalSpaceModelProd
prod
β€”Set.prod_range_range_eq
Boundaryless.range_eq_univ
Set.univ_prod_univ
range_prod πŸ“–mathematicalβ€”Set.range
ModelProd
toFun'
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
instTopologicalSpaceModelProd
prod
SProd.sprod
Set
Set.instSProd
β€”β€”
range_subset_closure_interior πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.range
toFun'
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
interior
β€”Convex.closure_interior_eq_closure_of_nonempty_interior
Real.instIsStrictOrderedRing
SeminormedAddCommGroup.toIsTopologicalAddGroup
instOrderTopologyReal
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
convex_range
nonempty_interior
subset_closure
range_eq_univ_of_not_isRCLikeNormedField
interior_univ
IsClosed.closure_eq
Set.instReflSubset
rightInvOn πŸ“–mathematicalβ€”Set.RightInvOn
PartialEquiv.toFun
symm
toFun'
Set.range
β€”Function.LeftInverse.rightInvOn_range
leftInverse
right_inv πŸ“–mathematicalSet
Set.instMembership
Set.range
toFun'
PartialEquiv.toFun
symm
β€”rightInvOn
secondCountableTopology πŸ“–mathematicalβ€”SecondCountableTopologyβ€”Topology.IsEmbedding.secondCountableTopology
Topology.IsClosedEmbedding.isEmbedding
isClosedEmbedding
source_eq πŸ“–mathematicalβ€”PartialEquiv.source
toPartialEquiv
Set.univ
β€”β€”
symm_comp_self πŸ“–mathematicalβ€”PartialEquiv.toFun
symm
toFun'
β€”Function.LeftInverse.comp_eq_id
leftInverse
symm_continuousWithinAt_comp_right_iff πŸ“–mathematicalβ€”ContinuousWithinAt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
PartialEquiv.toFun
symm
Set
Set.instInter
Set.preimage
Set.range
toFun'
β€”ContinuousWithinAt.comp
continuousWithinAt
Set.mapsTo_preimage
symm_comp_self
Function.comp_assoc
Set.inter_univ
Set.preimage_range
left_inv
Set.preimage_preimage
continuousWithinAt_symm
Set.inter_subset_left
symm_map_nhdsWithin_image πŸ“–mathematicalβ€”Filter.map
PartialEquiv.toFun
symm
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
toFun'
Set.image
β€”map_nhdsWithin_eq
Filter.map_map
symm_comp_self
Filter.map_id
symm_map_nhdsWithin_range πŸ“–mathematicalβ€”Filter.map
PartialEquiv.toFun
symm
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
toFun'
Set.range
nhds
β€”map_nhds_eq
Filter.map_map
symm_comp_self
Filter.map_id
t1Space πŸ“–mathematicalβ€”T1Spaceβ€”Topology.IsEmbedding.t2Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Topology.IsClosedEmbedding.toIsEmbedding
isClosedEmbedding
ChartedSpace.t1Space
T2Space.t1Space
target_eq πŸ“–mathematicalβ€”PartialEquiv.target
toPartialEquiv
Set.range
toFun'
β€”Set.image_univ
source_eq
PartialEquiv.image_source_eq_target
toHomeomorph_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
EquivLike.toFunLike
Homeomorph.instEquivLike
toHomeomorph
toFun'
β€”β€”
toHomeomorph_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
toHomeomorph
PartialEquiv.toFun
symm
β€”β€”
toPartialEquiv_coe πŸ“–mathematicalβ€”PartialEquiv.toFun
toPartialEquiv
toFun'
β€”β€”
toPartialEquiv_coe_symm πŸ“–mathematicalβ€”PartialEquiv.toFun
PartialEquiv.symm
toPartialEquiv
symm
β€”β€”
uniqueDiffOn πŸ“–mathematicalβ€”UniqueDiffOn
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set.range
toFun'
β€”uniqueDiffOn_convex_of_isRCLikeNormedField
convex_range
nonempty_interior
range_eq_univ_of_not_isRCLikeNormedField
NormedField.nhdsNE_neBot
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
uniqueDiffOn_preimage πŸ“–mathematicalIsOpenUniqueDiffOn
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Set.instInter
Set.preimage
PartialEquiv.toFun
symm
Set.range
toFun'
β€”Set.inter_comm
UniqueDiffOn.inter
IsTopologicalAddGroup.toContinuousAdd
SeminormedAddCommGroup.toIsTopologicalAddGroup
uniqueDiffOn
IsOpen.preimage
continuous_invFun
uniqueDiffOn_preimage_source πŸ“–mathematicalβ€”UniqueDiffOn
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set
Set.instInter
Set.preimage
PartialEquiv.toFun
symm
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
Set.range
toFun'
β€”uniqueDiffOn_preimage
OpenPartialHomeomorph.open_source
uniqueDiffWithinAt_image πŸ“–mathematicalβ€”UniqueDiffWithinAt
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toAddCommGroup
NormedSpace.toModule
NormedAddCommGroup.toSeminormedAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
Set.range
toFun'
β€”uniqueDiffOn
Set.mem_range_self

ModelWithCorners.Boundaryless

Theorems

NameKindAssumesProvesValidatesDepends On
range_eq_univ πŸ“–mathematicalβ€”Set.range
ModelWithCorners.toFun'
Set.univ
β€”β€”

ModelWithCorners.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”
symm_apply πŸ“–CompOpβ€”

OpenPartialHomeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
isManifold_singleton πŸ“–mathematicalPartialEquiv.source
toPartialEquiv
Set.univ
IsManifold
singletonChartedSpace
β€”IsManifold.mk'
singleton_hasGroupoid
instClosedUnderRestrictionContDiffGroupoid

PartialEquiv.Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
invFun πŸ“–mathematicalContinuous
PartialEquiv.toFun
PartialEquiv.symm
PartialEquiv.invFunβ€”β€”

TopologicalSpace.Opens

Theorems

NameKindAssumesProvesValidatesDepends On
instIsManifoldSubtypeMem πŸ“–mathematicalβ€”IsManifold
TopologicalSpace.Opens
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
instChartedSpace
β€”instHasGroupoid
IsManifold.toHasGroupoid
instClosedUnderRestrictionContDiffGroupoid

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isManifold_singleton πŸ“–mathematicalTopology.IsOpenEmbeddingIsManifold
singletonChartedSpace
β€”OpenPartialHomeomorph.isManifold_singleton

(root)

Definitions

NameCategoryTheorems
IsManifold πŸ“–CompData
33 mathmath: instIsManifoldRealEuclideanSpaceFinModelWithCornersSelfTopWithTopENatElemHAddNatOfNatSphere, TopologicalSpace.Opens.instIsManifoldSubtypeMem, instIsManifoldRealEuclideanSpaceFinOfNatNatEuclideanHalfSpaceModelWithCornersEuclideanHalfSpaceElemIcc, ContMDiffAdd.toIsManifold, SingularManifold.isManifold, ContMDiffMul.toIsManifold, instIsManifoldOfNatWithTopENatOfMinSmoothness, instIsManifoldRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, OpenPartialHomeomorph.isManifold_singleton, Units.instIsManifoldModelWithCornersSelf, Bundle.TotalSpace.isManifold, IsManifold.instOfTopWithTopENat, EuclideanSpace.instIsManifoldSphere, instIsManifoldMinSmoothnessOfNatWithTopENat_1, IsManifold.empty, IsManifold.disjointUnion, instIsManifoldMinSmoothnessOfNatWithTopENat, IsManifold.mk', ContinuousLinearEquiv.instIsManifoldtransContinuousLinearEquiv, IsManifold.prod, Topology.IsOpenEmbedding.isManifold_singleton, instIsManifoldModelSpace, instIsManifoldOfNatWithTopENatOfMinSmoothness_1, IsManifold.of_discreteTopology, IsManifold.instOfNatWithTopENat_1, SingularManifold.instIsManifoldRealM, IsManifold.instOfNatWithTopENat_2, IsManifold.of_le, isManifold_of_contDiffOn, UpperHalfPlane.instIsManifoldComplexModelWithCornersSelfTopWithTopENat, IsManifold.instOfSomeENatTopOfLEInfty, IsManifold.instOfNatWithTopENat, instIsManifoldIcc
ModelWithCorners πŸ“–CompDataβ€”
TangentBundle πŸ“–CompOp
28 mathmath: tangentMap_chart, TangentBundle.coe_chartAt_fst, contMDiff_equivTangentBundleProd_symm, tangentBundle_model_space_coe_chartAt, equivTangentBundleProd_apply, ContMDiff.contMDiff_tangentMap, tangentMap_id, ContMDiffOn.continuousOn_tangentMapWithin, tangentBundle_model_space_coe_chartAt_symm, tangentBundleModelSpaceHomeomorph_coe, equivTangentBundleProd_symm_apply_snd, TangentBundle.chartAt, tangentBundle_model_space_chartAt, TangentBundle.mem_chart_target_iff, tangentMap_chart_symm, tangentMap_comp, tangentBundleModelSpaceHomeomorph_coe_symm, contMDiff_equivTangentBundleProd, equivTangentBundleProd_eq_tangentMap_prod_tangentMap, ContMDiffOn.contMDiffOn_tangentMapWithin, contMDiff_tangentBundleModelSpaceHomeomorph, TangentBundle.coe_chartAt_symm_fst, contMDiff_tangentBundleModelSpaceHomeomorph_symm, equivTangentBundleProd_symm_apply_proj, TangentBundle.chartAt_toPartialEquiv, ContMDiff.continuous_tangentMap, contMDiff_snd_tangentBundle_modelSpace, TangentBundle.mem_chart_source_iff
TangentSpace πŸ“–CompOp
232 mathmath: mfderiv_sumSwap, TangentBundle.continuousLinearMapAt_model_space, TangentBundle.tangentMap_tangentBundle_pure, mfderiv_prod_eq_add, instContMDiffVectorBundleOfNatWithTopENatTangentSpaceOfIsManifold, HasMFDerivAt.mul, HasMFDerivAt.add, Manifold.pathELength_eq_lintegral_mfderiv_Ioo, MDifferentiableAt.mfderiv_prod, contMDiffWithinAt_vectorSpace_iff_contDiffWithinAt, setOf_riemmanianEDist_lt_subset_nhds, VectorField.mpullbackWithin_add, eventually_enorm_mfderivWithin_symm_extChartAt_lt, tangentMap_snd, TangentBundle.symmL_trivializationAt, VectorField.mpullbackWithin_smul, contMDiff_addInvariantVectorField, mfderiv_comp, TangentBundle.coe_chartAt_fst, SmoothBumpCovering.exists_immersion_euclidean, HasMFDerivWithinAt.prodMk, mfderiv_comp_apply_of_eq, addInvariantVectorField_smul, contMDiff_mulInvariantVectorField, contMDiff_equivTangentBundleProd_symm, hasMFDerivAt_sumSwap, TangentBundle.symmL_trivializationAt_eq_core, TangentBundle.continuousLinearMapAt_trivializationAt_eq_core, mfderiv_comp_of_eq, inTangentCoordinates_eq_mfderiv_comp, mfderivWithin_projIcc_one, tangentBundle_model_space_coe_chartAt, hasMFDerivAt_fst, mfderivWithin_comp_projIcc_one, contMDiffAt_mulInvariantVectorField, HasMFDerivAt.neg, Manifold.pathELength_def, equivTangentBundleProd_apply, VectorField.mlieBracket_zero_right, ModelWithCorners.hasMFDerivAt, HasMFDerivWithinAt.prodMap, mdifferentiableAt_addInvariantVectorField, eventually_norm_mfderivWithin_symm_extChartAt_lt, ContMDiff.contMDiff_tangentMap, HasMFDerivWithinAt.neg, hasMFDerivAt_inr, TangentBundle.trivializationAt_fst, Manifold.pathELength_eq_lintegral_mfderivWithin_Icc, mfderivWithin_sumInr, hasMFDerivAt_neg, mfderivWithin_comp_of_preimage_mem_nhdsWithin_of_eq, mfderiv_prod_eq_add_comp, eventually_riemmanianEDist_lt, mfderiv_comp_mfderivWithin, VectorField.mpullback_add_apply, hasMFDerivWithinAt_inr, IsMIntegralCurveOn.comp_mul, mdifferentiable_mulInvariantVectorField, tangentMapWithin_snd, mfderivWithin_sumInl, instContMDiffVectorBundleTopWithTopENatTangentSpaceOfIsManifold, VectorField.mpullback_smul_apply, mfderiv_sumInl, mfderiv_sub, TangentBundle.trivializationAt_apply, VectorField.mpullbackWithin_neg_apply, contMDiff_vectorSpace_iff_contDiff, mfderiv_prodMap, mfderiv_extChartAt_comp_mfderivWithin_extChartAt_symm, tangentMapWithin_proj, tangentMap_prodSnd, Diffeomorph.mfderivToContinuousLinearEquiv_coe, HasMFDerivAt.prodMap, hasMFDerivAt_id, hasMFDerivWithinAt_id, VectorField.mpullback_apply, hasMFDerivWithinAt_fst, VectorField.mpullback_zero, mfderivWithin_eventually_congr_set', ContMDiffOn.continuousOn_tangentMapWithin, VectorField.mpullbackWithin_neg, VectorField.mlieBracketWithin_zero_right, trivializationAt_model_space_apply, VectorField.mpullbackWithin_zero, mfderiv_coe_sphere_injective, mfderiv_add, mfderivWithin_comp_of_preimage_mem_nhdsWithin, TangentBundle.trivializationAt_source, OpenPartialHomeomorph.MDifferentiable.comp_symm_deriv, hasMFDerivAt_inl, IsMIntegralCurveAt.hasMFDerivAt, SmoothBumpCovering.embeddingPiTangent_injective_mfderiv, VectorField.mlieBracketWithin_self, tangentBundle_model_space_coe_chartAt_symm, equivTangentBundleProd_symm_apply_snd, OpenPartialHomeomorph.MDifferentiable.mfderiv_bijective, TangentBundle.chartAt, hasMFDerivAt_const, VectorField.mlieBracket_zero_left, VectorField.mlieBracket_swap_apply, VectorField.mpullbackWithin_smul_apply, HasMFDerivWithinAt.sum, mfderiv_prod_right, mfderivWithin_zero_of_not_mdifferentiableWithinAt, SmoothBumpCovering.embeddingPiTangent_ker_mfderiv, ModelWithCorners.hasMFDerivWithinAt, Manifold.riemannianEDist_def, HasMFDerivWithinAt.mul', TangentBundle.contMDiffVectorBundle, OpenPartialHomeomorph.MDifferentiable.range_mfderiv_eq_top, VectorField.mlieBracketWithin_swap_apply, UniqueMDiffOn.tangentBundle_proj_preimage, TangentBundle.continuousLinearMapAt_trivializationAt, tangentBundle_model_space_chartAt, TangentBundle.mem_chart_target_iff, IsLocalDiffeomorph.mfderivToContinuousLinearEquiv_coe, mfderivWithin_const, OpenPartialHomeomorph.MDifferentiable.mfderiv_surjective, hasMFDerivWithinAt_const, eventually_enorm_mfderiv_extChartAt_lt, enorm_tangentSpace_vectorSpace, oneTangentSpaceIcc_def, ModelWithCorners.hasMFDerivWithinAt_symm, mfderivWithin_prodMap, mfderiv_sumInr, HasMFDerivAt.sub, contMDiffAt_vectorSpace_iff_contDiffAt, mfderiv_snd, HasMFDerivWithinAt.add, TangentBundle.trivializationAt_eq_localTriv, mdifferentiable_addInvariantVectorField, mfderiv_zero_of_not_mdifferentiableAt, TangentSpace.vectorBundle, TangentBundle.symmL_model_space, isMIntegralCurveAt_comp_mul_ne_zero, setOf_riemannianEDist_lt_subset_nhds, range_mfderiv_coe_sphere, eventually_riemannianEDist_le_edist_extChartAt, IsMIntegralCurve.comp_mul, mfderiv_extChartAt_comp_mfderivWithin_extChartAt_symm', SmoothBumpCovering.comp_embeddingPiTangent_mfderiv, VectorField.mpullback_add, HasMFDerivAt.comp_hasMFDerivWithinAt, mfderiv_prodMk, hasMFDerivWithinAt_snd, mfderivWithin_extChartAt_symm_comp_mfderiv_extChartAt', HasMFDerivAt.prod, mfderivWithin_extChartAt_symm_comp_mfderiv_extChartAt, VectorField.mpullback_smul, contMDiff_equivTangentBundleProd, mfderiv_comp_apply, tangentMap_proj, HasMFDerivWithinAt.mul, OpenPartialHomeomorph.MDifferentiable.symm_comp_deriv, Manifold.pathELength_eq_lintegral_mfderiv_Icc, TangentBundle.trivializationAt_baseSet, norm_tangentSpace_vectorSpace, mdifferentiableAt_mulInvariantVectorField, isMIntegralCurveOn_comp_mul_ne_zero, mfderivWithin_prodMk, OpenPartialHomeomorph.MDifferentiable.mfderiv_injective, mfderivWithin_eventually_congr_set, VectorField.mpullbackWithin_apply, mfderiv_const, tangentMap_prodFst, ContMDiffOn.contMDiffOn_tangentMapWithin, eventually_norm_mfderivWithin_symm_extChartAt_comp_lt, VectorField.mpullback_neg_apply, IsMIntegralCurveAt.comp_mul_ne_zero, inverse_mfderiv_mul_left, setOf_riemmanianEDist_lt_subset_nhds', exists_embedding_euclidean_of_compact, HasMFDerivAt.prodMk, Manifold.lintegral_norm_mfderiv_Icc_eq_pathELength_projIcc, OpenPartialHomeomorph.MDifferentiable.ker_mfderiv_eq_bot, contMDiffAt_addInvariantVectorField, contMDiff_tangentBundleModelSpaceHomeomorph, VectorField.mpullback_neg, isInvertible_mfderiv_extChartAt, VectorField.mlieBracket_swap, hasMFDerivAt_snd, HasMFDerivAt.sum, TangentBundle.coe_chartAt_symm_fst, contMDiff_tangentBundleModelSpaceHomeomorph_symm, OpenPartialHomeomorph.MDifferentiable.range_mfderiv_eq_univ, nnnorm_tangentSpace_vectorSpace, mfderiv_fst, mfderivWithin_fst, isInvertible_mfderivWithin_extChartAt_symm, mulInvariantVectorField_smul, equivTangentBundleProd_symm_apply_proj, VectorField.mlieBracketWithin_apply, IsRiemannianManifold.out, mfderiv_subtype_coe_Icc_one, HasMFDerivWithinAt.comp, TangentBundle.chartAt_toPartialEquiv, VectorField.mlieBracketWithin_zero_left, HasMFDerivAt.comp, tangentMap_prod_right, contMDiffOn_vectorSpace_iff_contDiffOn, mfderiv_neg, VectorField.mlieBracketWithin_swap, tangentMap_prod_left, IsLocalDiffeomorphAt.mfderivToContinuousLinearEquiv_coe, HasMFDerivWithinAt.prod, HasMFDerivAt.mul', mfderivWithin_id, mfderivWithin_sumSwap, mfderiv_prod_left, VectorField.mlieBracket_self, hasMFDerivWithinAt_inl, eventually_norm_mfderiv_extChartAt_lt, isMIntegralCurve_comp_mul_ne_zero, mfderiv_comp_mfderivWithin_of_eq, mulInvariantVectorField_add, instContMDiffVectorBundleSomeENatTopTangentSpaceOfIsManifold, inCoordinates_tangent_bundle_core_model_space, inverse_mfderiv_add_left, contMDiff_snd_tangentBundle_modelSpace, setOf_riemannianEDist_lt_subset_nhds', const_smul_mfderiv, HasMFDerivAt.const_smul, mfderivWithin_snd, eventually_riemannianEDist_lt, mfderiv_prod_eq_add_apply, mfderivWithin_comp, addInvariantVectorField_add, TangentBundle.mem_chart_source_iff, TangentBundle.trivializationAt_target, VectorField.mpullbackWithin_add_apply, mfderiv_id, mfderivWithin_comp_of_eq
contDiffGroupoid πŸ“–CompOp
17 mathmath: instClosedUnderRestrictionContDiffGroupoid, smoothSheafCommRing.eval_germ, contDiffGroupoid_le, IsManifold.mem_maximalAtlas_iff, symm_trans_mem_contDiffGroupoid, smoothSheafCommRing.evalHom_germ, contDiffWithinAt_localInvariantProp, contDiffWithinAt_localInvariantProp_of_le, IsManifold.toHasGroupoid, isLocalStructomorphOn_contDiffGroupoid_iff, contDiffGroupoid_zero_eq, IsManifold.compatible_of_mem_maximalAtlas, smoothSheaf.eval_germ, differentiableWithinAt_localInvariantProp, smoothSheaf.contMDiff_section, ofSet_mem_contDiffGroupoid, ContDiffGroupoid.mem_of_source_eq_empty
contDiffPregroupoid πŸ“–CompOpβ€”
instAddCommGroupTangentSpace πŸ“–CompOp
61 mathmath: TangentBundle.tangentMap_tangentBundle_pure, mfderiv_prod_eq_add, setOf_riemmanianEDist_lt_subset_nhds, eventually_enorm_mfderivWithin_symm_extChartAt_lt, VectorField.mpullbackWithin_smul, addInvariantVectorField_smul, VectorField.mlieBracketWithin_const_smul_right, HasMFDerivAt.neg, VectorField.mlieBracket_zero_right, eventually_norm_mfderivWithin_symm_extChartAt_lt, HasMFDerivWithinAt.neg, hasMFDerivAt_neg, mfderiv_prod_eq_add_comp, eventually_riemmanianEDist_lt, IsMIntegralCurveOn.comp_mul, VectorField.mpullback_smul_apply, mfderiv_sub, VectorField.mpullbackWithin_neg_apply, VectorField.mlieBracketWithin_const_smul_left, VectorField.mpullback_zero, VectorField.mpullbackWithin_neg, VectorField.mlieBracketWithin_zero_right, VectorField.mpullbackWithin_zero, VectorField.mlieBracketWithin_self, VectorField.mlieBracket_zero_left, VectorField.mlieBracket_swap_apply, VectorField.mpullbackWithin_smul_apply, HasMFDerivWithinAt.sum, VectorField.mlieBracketWithin_swap_apply, eventually_enorm_mfderiv_extChartAt_lt, enorm_tangentSpace_vectorSpace, HasMFDerivAt.sub, isMIntegralCurveAt_comp_mul_ne_zero, VectorField.mlieBracket_const_smul_left, setOf_riemannianEDist_lt_subset_nhds, eventually_riemannianEDist_le_edist_extChartAt, IsMIntegralCurve.comp_mul, HasMFDerivAt.prod, VectorField.mpullback_smul, norm_tangentSpace_vectorSpace, isMIntegralCurveOn_comp_mul_ne_zero, eventually_norm_mfderivWithin_symm_extChartAt_comp_lt, VectorField.mpullback_neg_apply, IsMIntegralCurveAt.comp_mul_ne_zero, setOf_riemmanianEDist_lt_subset_nhds', VectorField.mpullback_neg, VectorField.mlieBracket_swap, HasMFDerivAt.sum, nnnorm_tangentSpace_vectorSpace, mulInvariantVectorField_smul, IsRiemannianManifold.out, VectorField.mlieBracketWithin_zero_left, mfderiv_neg, VectorField.mlieBracketWithin_swap, HasMFDerivWithinAt.prod, VectorField.mlieBracket_self, eventually_norm_mfderiv_extChartAt_lt, isMIntegralCurve_comp_mul_ne_zero, setOf_riemannianEDist_lt_subset_nhds', eventually_riemannianEDist_lt, VectorField.mlieBracket_const_smul_right
instContinuousConstSMulTangentSpace πŸ“–CompOp
17 mathmath: setOf_riemmanianEDist_lt_subset_nhds, eventually_enorm_mfderivWithin_symm_extChartAt_lt, eventually_norm_mfderivWithin_symm_extChartAt_lt, eventually_riemmanianEDist_lt, eventually_enorm_mfderiv_extChartAt_lt, enorm_tangentSpace_vectorSpace, setOf_riemannianEDist_lt_subset_nhds, eventually_riemannianEDist_le_edist_extChartAt, norm_tangentSpace_vectorSpace, eventually_norm_mfderivWithin_symm_extChartAt_comp_lt, setOf_riemmanianEDist_lt_subset_nhds', nnnorm_tangentSpace_vectorSpace, IsRiemannianManifold.out, eventually_norm_mfderiv_extChartAt_lt, setOf_riemannianEDist_lt_subset_nhds', const_smul_mfderiv, eventually_riemannianEDist_lt
instContinuousSMulTangentSpace πŸ“–CompOp
1 mathmath: IsMIntegralCurveAt.hasMFDerivAt
instInhabitedTangentSpace πŸ“–CompOpβ€”
instIsTopologicalAddGroupTangentSpace πŸ“–CompOp
23 mathmath: mfderiv_prod_eq_add, setOf_riemmanianEDist_lt_subset_nhds, eventually_enorm_mfderivWithin_symm_extChartAt_lt, eventually_norm_mfderivWithin_symm_extChartAt_lt, mfderiv_prod_eq_add_comp, eventually_riemmanianEDist_lt, HasMFDerivWithinAt.sum, eventually_enorm_mfderiv_extChartAt_lt, enorm_tangentSpace_vectorSpace, setOf_riemannianEDist_lt_subset_nhds, eventually_riemannianEDist_le_edist_extChartAt, HasMFDerivAt.prod, norm_tangentSpace_vectorSpace, eventually_norm_mfderivWithin_symm_extChartAt_comp_lt, setOf_riemmanianEDist_lt_subset_nhds', HasMFDerivAt.sum, nnnorm_tangentSpace_vectorSpace, IsRiemannianManifold.out, mfderiv_neg, HasMFDerivWithinAt.prod, eventually_norm_mfderiv_extChartAt_lt, setOf_riemannianEDist_lt_subset_nhds', eventually_riemannianEDist_lt
instModuleTangentSpace πŸ“–CompOp
171 mathmath: mfderiv_sumSwap, TangentBundle.continuousLinearMapAt_model_space, mfderiv_prod_eq_add, instContMDiffVectorBundleOfNatWithTopENatTangentSpaceOfIsManifold, HasMFDerivAt.mul, HasMFDerivAt.add, Manifold.pathELength_eq_lintegral_mfderiv_Ioo, MDifferentiableAt.mfderiv_prod, setOf_riemmanianEDist_lt_subset_nhds, eventually_enorm_mfderivWithin_symm_extChartAt_lt, tangentMap_snd, TangentBundle.symmL_trivializationAt, VectorField.mpullbackWithin_smul, mfderiv_comp, SmoothBumpCovering.exists_immersion_euclidean, HasMFDerivWithinAt.prodMk, mfderiv_comp_apply_of_eq, addInvariantVectorField_smul, VectorField.mlieBracketWithin_const_smul_right, hasMFDerivAt_sumSwap, TangentBundle.symmL_trivializationAt_eq_core, TangentBundle.continuousLinearMapAt_trivializationAt_eq_core, mfderiv_comp_of_eq, inTangentCoordinates_eq_mfderiv_comp, mfderivWithin_projIcc_one, hasMFDerivAt_fst, mfderivWithin_comp_projIcc_one, HasMFDerivAt.neg, Manifold.pathELength_def, ModelWithCorners.hasMFDerivAt, HasMFDerivWithinAt.prodMap, eventually_norm_mfderivWithin_symm_extChartAt_lt, HasMFDerivWithinAt.neg, hasMFDerivAt_inr, Manifold.pathELength_eq_lintegral_mfderivWithin_Icc, mfderivWithin_sumInr, hasMFDerivAt_neg, mfderivWithin_comp_of_preimage_mem_nhdsWithin_of_eq, mfderiv_prod_eq_add_comp, eventually_riemmanianEDist_lt, mfderiv_comp_mfderivWithin, hasMFDerivWithinAt_inr, IsMIntegralCurveOn.comp_mul, tangentMapWithin_snd, mfderivWithin_sumInl, instContMDiffVectorBundleTopWithTopENatTangentSpaceOfIsManifold, VectorField.mpullback_smul_apply, mfderiv_sumInl, mfderiv_sub, mfderiv_prodMap, VectorField.mlieBracketWithin_const_smul_left, mfderiv_extChartAt_comp_mfderivWithin_extChartAt_symm, Diffeomorph.mfderivToContinuousLinearEquiv_coe, HasMFDerivAt.prodMap, hasMFDerivAt_id, hasMFDerivWithinAt_id, VectorField.mpullback_apply, hasMFDerivWithinAt_fst, mfderivWithin_eventually_congr_set', HasMFDerivWithinAt.hasFDerivWithinAt, mfderiv_coe_sphere_injective, mfderiv_add, mfderivWithin_comp_of_preimage_mem_nhdsWithin, OpenPartialHomeomorph.MDifferentiable.comp_symm_deriv, hasMFDerivAt_inl, IsMIntegralCurveAt.hasMFDerivAt, SmoothBumpCovering.embeddingPiTangent_injective_mfderiv, OpenPartialHomeomorph.MDifferentiable.mfderiv_bijective, hasMFDerivAt_const, VectorField.mpullbackWithin_smul_apply, HasMFDerivWithinAt.sum, mfderiv_prod_right, mfderivWithin_zero_of_not_mdifferentiableWithinAt, SmoothBumpCovering.embeddingPiTangent_ker_mfderiv, ModelWithCorners.hasMFDerivWithinAt, Manifold.riemannianEDist_def, HasMFDerivWithinAt.mul', TangentBundle.contMDiffVectorBundle, OpenPartialHomeomorph.MDifferentiable.range_mfderiv_eq_top, TangentBundle.continuousLinearMapAt_trivializationAt, IsLocalDiffeomorph.mfderivToContinuousLinearEquiv_coe, HasMFDerivAt.hasFDerivAt, mfderivWithin_const, OpenPartialHomeomorph.MDifferentiable.mfderiv_surjective, hasMFDerivWithinAt_const, eventually_enorm_mfderiv_extChartAt_lt, enorm_tangentSpace_vectorSpace, oneTangentSpaceIcc_def, ModelWithCorners.hasMFDerivWithinAt_symm, mfderivWithin_prodMap, mfderiv_sumInr, HasMFDerivAt.sub, mfderiv_snd, HasMFDerivWithinAt.add, mfderiv_zero_of_not_mdifferentiableAt, TangentSpace.vectorBundle, TangentBundle.symmL_model_space, isMIntegralCurveAt_comp_mul_ne_zero, VectorField.mlieBracket_const_smul_left, setOf_riemannianEDist_lt_subset_nhds, range_mfderiv_coe_sphere, eventually_riemannianEDist_le_edist_extChartAt, IsMIntegralCurve.comp_mul, mfderiv_extChartAt_comp_mfderivWithin_extChartAt_symm', SmoothBumpCovering.comp_embeddingPiTangent_mfderiv, HasMFDerivAt.comp_hasMFDerivWithinAt, mfderiv_prodMk, hasMFDerivWithinAt_snd, mfderivWithin_extChartAt_symm_comp_mfderiv_extChartAt', HasMFDerivAt.prod, mfderivWithin_extChartAt_symm_comp_mfderiv_extChartAt, VectorField.mpullback_smul, mfderiv_comp_apply, HasMFDerivWithinAt.mul, OpenPartialHomeomorph.MDifferentiable.symm_comp_deriv, Manifold.pathELength_eq_lintegral_mfderiv_Icc, norm_tangentSpace_vectorSpace, isMIntegralCurveOn_comp_mul_ne_zero, mfderivWithin_prodMk, OpenPartialHomeomorph.MDifferentiable.mfderiv_injective, mfderivWithin_eventually_congr_set, VectorField.mpullbackWithin_apply, mfderiv_const, hasMFDerivAt_iff_hasFDerivAt, eventually_norm_mfderivWithin_symm_extChartAt_comp_lt, IsMIntegralCurveAt.comp_mul_ne_zero, inverse_mfderiv_mul_left, setOf_riemmanianEDist_lt_subset_nhds', exists_embedding_euclidean_of_compact, HasMFDerivAt.prodMk, Manifold.lintegral_norm_mfderiv_Icc_eq_pathELength_projIcc, OpenPartialHomeomorph.MDifferentiable.ker_mfderiv_eq_bot, isInvertible_mfderiv_extChartAt, hasMFDerivAt_snd, HasMFDerivAt.sum, OpenPartialHomeomorph.MDifferentiable.range_mfderiv_eq_univ, nnnorm_tangentSpace_vectorSpace, mfderiv_fst, mfderivWithin_fst, isInvertible_mfderivWithin_extChartAt_symm, mulInvariantVectorField_smul, VectorField.mlieBracketWithin_apply, IsRiemannianManifold.out, mfderiv_subtype_coe_Icc_one, HasMFDerivWithinAt.comp, HasMFDerivAt.comp, mfderiv_neg, IsLocalDiffeomorphAt.mfderivToContinuousLinearEquiv_coe, HasMFDerivWithinAt.prod, HasMFDerivAt.mul', mfderivWithin_id, mfderivWithin_sumSwap, mfderiv_prod_left, hasMFDerivWithinAt_inl, eventually_norm_mfderiv_extChartAt_lt, isMIntegralCurve_comp_mul_ne_zero, mfderiv_comp_mfderivWithin_of_eq, instContMDiffVectorBundleSomeENatTopTangentSpaceOfIsManifold, inCoordinates_tangent_bundle_core_model_space, hasMFDerivWithinAt_iff_hasFDerivWithinAt, inverse_mfderiv_add_left, setOf_riemannianEDist_lt_subset_nhds', const_smul_mfderiv, HasMFDerivAt.const_smul, mfderivWithin_snd, eventually_riemannianEDist_lt, mfderiv_prod_eq_add_apply, mfderivWithin_comp, VectorField.mlieBracket_const_smul_right, mfderiv_id, mfderivWithin_comp_of_eq
instPathConnectedSpaceTangentSpaceReal πŸ“–CompOpβ€”
instTopologicalSpaceTangentSpace πŸ“–CompOp
212 mathmath: mfderiv_sumSwap, TangentBundle.continuousLinearMapAt_model_space, TangentBundle.tangentMap_tangentBundle_pure, mfderiv_prod_eq_add, instContMDiffVectorBundleOfNatWithTopENatTangentSpaceOfIsManifold, HasMFDerivAt.mul, HasMFDerivAt.add, Manifold.pathELength_eq_lintegral_mfderiv_Ioo, MDifferentiableAt.mfderiv_prod, contMDiffWithinAt_vectorSpace_iff_contDiffWithinAt, setOf_riemmanianEDist_lt_subset_nhds, VectorField.mpullbackWithin_add, eventually_enorm_mfderivWithin_symm_extChartAt_lt, tangentMap_snd, tangentMap_chart, TangentBundle.symmL_trivializationAt, VectorField.mpullbackWithin_smul, contMDiff_addInvariantVectorField, mfderiv_comp, TangentBundle.coe_chartAt_fst, SmoothBumpCovering.exists_immersion_euclidean, HasMFDerivWithinAt.prodMk, mfderiv_comp_apply_of_eq, addInvariantVectorField_smul, contMDiff_mulInvariantVectorField, contMDiff_equivTangentBundleProd_symm, hasMFDerivAt_sumSwap, TangentBundle.symmL_trivializationAt_eq_core, TangentBundle.continuousLinearMapAt_trivializationAt_eq_core, mfderiv_comp_of_eq, inTangentCoordinates_eq_mfderiv_comp, mfderivWithin_projIcc_one, tangentBundle_model_space_coe_chartAt, hasMFDerivAt_fst, mfderivWithin_comp_projIcc_one, contMDiffAt_mulInvariantVectorField, HasMFDerivAt.neg, Manifold.pathELength_def, ModelWithCorners.hasMFDerivAt, HasMFDerivWithinAt.prodMap, mdifferentiableAt_addInvariantVectorField, eventually_norm_mfderivWithin_symm_extChartAt_lt, ContMDiff.contMDiff_tangentMap, HasMFDerivWithinAt.neg, hasMFDerivAt_inr, TangentBundle.trivializationAt_fst, Manifold.pathELength_eq_lintegral_mfderivWithin_Icc, mfderivWithin_sumInr, hasMFDerivAt_neg, mfderivWithin_comp_of_preimage_mem_nhdsWithin_of_eq, mfderiv_prod_eq_add_comp, eventually_riemmanianEDist_lt, mfderiv_comp_mfderivWithin, VectorField.mpullback_add_apply, hasMFDerivWithinAt_inr, IsMIntegralCurveOn.comp_mul, mdifferentiable_mulInvariantVectorField, tangentMapWithin_snd, mfderivWithin_sumInl, instContMDiffVectorBundleTopWithTopENatTangentSpaceOfIsManifold, VectorField.mpullback_smul_apply, mfderiv_sumInl, mfderiv_sub, TangentBundle.trivializationAt_apply, contMDiff_vectorSpace_iff_contDiff, mfderiv_prodMap, mfderiv_extChartAt_comp_mfderivWithin_extChartAt_symm, Diffeomorph.mfderivToContinuousLinearEquiv_coe, HasMFDerivAt.prodMap, hasMFDerivAt_id, hasMFDerivWithinAt_id, VectorField.mpullback_apply, hasMFDerivWithinAt_fst, mfderivWithin_eventually_congr_set', HasMFDerivWithinAt.hasFDerivWithinAt, trivializationAt_model_space_apply, mfderiv_coe_sphere_injective, mfderiv_add, mfderivWithin_comp_of_preimage_mem_nhdsWithin, TangentBundle.trivializationAt_source, OpenPartialHomeomorph.MDifferentiable.comp_symm_deriv, hasMFDerivAt_inl, IsMIntegralCurveAt.hasMFDerivAt, SmoothBumpCovering.embeddingPiTangent_injective_mfderiv, tangentBundle_model_space_coe_chartAt_symm, OpenPartialHomeomorph.MDifferentiable.mfderiv_bijective, TangentBundle.chartAt, hasMFDerivAt_const, VectorField.mpullbackWithin_smul_apply, HasMFDerivWithinAt.sum, mfderiv_prod_right, mfderivWithin_zero_of_not_mdifferentiableWithinAt, SmoothBumpCovering.embeddingPiTangent_ker_mfderiv, ModelWithCorners.hasMFDerivWithinAt, Manifold.riemannianEDist_def, HasMFDerivWithinAt.mul', TangentBundle.contMDiffVectorBundle, OpenPartialHomeomorph.MDifferentiable.range_mfderiv_eq_top, UniqueMDiffOn.tangentBundle_proj_preimage, TangentBundle.continuousLinearMapAt_trivializationAt, tangentBundle_model_space_chartAt, TangentBundle.mem_chart_target_iff, IsLocalDiffeomorph.mfderivToContinuousLinearEquiv_coe, HasMFDerivAt.hasFDerivAt, mfderivWithin_const, OpenPartialHomeomorph.MDifferentiable.mfderiv_surjective, hasMFDerivWithinAt_const, eventually_enorm_mfderiv_extChartAt_lt, enorm_tangentSpace_vectorSpace, oneTangentSpaceIcc_def, ModelWithCorners.hasMFDerivWithinAt_symm, mfderivWithin_prodMap, mfderiv_sumInr, tangentMap_chart_symm, HasMFDerivAt.sub, contMDiffAt_vectorSpace_iff_contDiffAt, mfderiv_snd, HasMFDerivWithinAt.add, TangentBundle.trivializationAt_eq_localTriv, mdifferentiable_addInvariantVectorField, mfderiv_zero_of_not_mdifferentiableAt, TangentSpace.vectorBundle, TangentBundle.symmL_model_space, isMIntegralCurveAt_comp_mul_ne_zero, setOf_riemannianEDist_lt_subset_nhds, range_mfderiv_coe_sphere, eventually_riemannianEDist_le_edist_extChartAt, IsMIntegralCurve.comp_mul, mfderiv_extChartAt_comp_mfderivWithin_extChartAt_symm', SmoothBumpCovering.comp_embeddingPiTangent_mfderiv, VectorField.mpullback_add, HasMFDerivAt.comp_hasMFDerivWithinAt, mfderiv_prodMk, hasMFDerivWithinAt_snd, mfderivWithin_extChartAt_symm_comp_mfderiv_extChartAt', HasMFDerivAt.prod, mfderivWithin_extChartAt_symm_comp_mfderiv_extChartAt, VectorField.mpullback_smul, contMDiff_equivTangentBundleProd, mfderiv_comp_apply, HasMFDerivWithinAt.mul, OpenPartialHomeomorph.MDifferentiable.symm_comp_deriv, Manifold.pathELength_eq_lintegral_mfderiv_Icc, TangentBundle.trivializationAt_baseSet, norm_tangentSpace_vectorSpace, mdifferentiableAt_mulInvariantVectorField, isMIntegralCurveOn_comp_mul_ne_zero, mfderivWithin_prodMk, OpenPartialHomeomorph.MDifferentiable.mfderiv_injective, mfderivWithin_eventually_congr_set, VectorField.mpullbackWithin_apply, mfderiv_const, hasMFDerivAt_iff_hasFDerivAt, ContMDiffOn.contMDiffOn_tangentMapWithin, eventually_norm_mfderivWithin_symm_extChartAt_comp_lt, IsMIntegralCurveAt.comp_mul_ne_zero, inverse_mfderiv_mul_left, setOf_riemmanianEDist_lt_subset_nhds', exists_embedding_euclidean_of_compact, HasMFDerivAt.prodMk, Manifold.lintegral_norm_mfderiv_Icc_eq_pathELength_projIcc, OpenPartialHomeomorph.MDifferentiable.ker_mfderiv_eq_bot, contMDiffAt_addInvariantVectorField, contMDiff_tangentBundleModelSpaceHomeomorph, isInvertible_mfderiv_extChartAt, hasMFDerivAt_snd, HasMFDerivAt.sum, TangentBundle.coe_chartAt_symm_fst, contMDiff_tangentBundleModelSpaceHomeomorph_symm, OpenPartialHomeomorph.MDifferentiable.range_mfderiv_eq_univ, nnnorm_tangentSpace_vectorSpace, mfderiv_fst, mfderivWithin_fst, isInvertible_mfderivWithin_extChartAt_symm, mulInvariantVectorField_smul, VectorField.mlieBracketWithin_apply, IsRiemannianManifold.out, mfderiv_subtype_coe_Icc_one, HasMFDerivWithinAt.comp, TangentBundle.chartAt_toPartialEquiv, HasMFDerivAt.comp, contMDiffOn_vectorSpace_iff_contDiffOn, mfderiv_neg, IsLocalDiffeomorphAt.mfderivToContinuousLinearEquiv_coe, HasMFDerivWithinAt.prod, HasMFDerivAt.mul', mfderivWithin_id, mfderivWithin_sumSwap, mfderiv_prod_left, hasMFDerivWithinAt_inl, eventually_norm_mfderiv_extChartAt_lt, isMIntegralCurve_comp_mul_ne_zero, mfderiv_comp_mfderivWithin_of_eq, mulInvariantVectorField_add, instContMDiffVectorBundleSomeENatTopTangentSpaceOfIsManifold, inCoordinates_tangent_bundle_core_model_space, hasMFDerivWithinAt_iff_hasFDerivWithinAt, inverse_mfderiv_add_left, contMDiff_snd_tangentBundle_modelSpace, setOf_riemannianEDist_lt_subset_nhds', const_smul_mfderiv, HasMFDerivAt.const_smul, mfderivWithin_snd, eventually_riemannianEDist_lt, mfderiv_prod_eq_add_apply, mfderivWithin_comp, addInvariantVectorField_add, TangentBundle.mem_chart_source_iff, TangentBundle.trivializationAt_target, VectorField.mpullbackWithin_add_apply, mfderiv_id, mfderivWithin_comp_of_eq
modelWithCornersSelf πŸ“–CompOp
420 mathmath: TangentBundle.continuousLinearMapAt_model_space, ContMDiffAt.coordChangeL, MDifferentiable.coordChangeL, UpperHalfPlane.mdifferentiable_num, Bundle.ContMDiffRiemannianMetric.contMDiff, Bundle.mdifferentiableAt_proj, SmoothBumpCovering.toSmoothPartitionOfUnity_eq_mul_prod, Trivialization.mdifferentiableAt_section_iff, LeftInvariantDerivation.lift_zero, exists_contMDiffMap_zero_one_of_isClosed, contMDiffAt_extend, CuspFormClass.holo, instIsManifoldRealEuclideanSpaceFinModelWithCornersSelfTopWithTopENatElemHAddNatOfNatSphere, LeftInvariantDerivation.leibniz, contMDiffWithinAt_iff_target, Bundle.contMDiffOn_zeroSection, ContMDiffMap.coeFnAlgHom_apply, Manifold.pathELength_eq_lintegral_mfderiv_Ioo, ContDiffWithinAt.contMDiffWithinAt, mdifferentiableWithinAt_totalSpace, contMDiffWithinAt_vectorSpace_iff_contDiffWithinAt, smoothSheafCommRing.nonunits_stalk, MDifferentiableWithinAt.differentiableWithinAt_mpullbackWithin_vectorField, contDiffWithinAtProp_self, ContDiffAt.contMDiffAt, mdifferentiable_iff_target, contMDiffAt_iff_source, ContinuousLinearEquiv.symm_toDiffeomorph, eventually_enorm_mfderivWithin_symm_extChartAt_lt, LeftInvariantDerivation.coe_derivation, TangentBundle.symmL_trivializationAt, SmoothPartitionOfUnity.locallyFinite, exists_smooth_one_nhds_of_subset_interior, ContMDiffWithinAt.mfderivWithin_const, SmoothPartitionOfUnity.nonneg, LeftInvariantDerivation.left_invariant', Trivialization.mdifferentiableOn_section_baseSet_iff, mdifferentiableOn_extChartAt, contMDiff_neg_sphere, mdifferentiableOn_symm_coordChangeL, SmoothBumpCovering.exists_immersion_euclidean, IsOpen.exists_msmooth_support_eq, SmoothPartitionOfUnity.locallyFinite', ModelWithCorners.mdifferentiableOn_symm, Bundle.contMDiffWithinAt_zeroSection, ContinuousLinearEquiv.coe_toDiffeomorph_symm, hasMFDerivAt_extChartAt, ContinuousLinearMap.contMDiff, ContinuousLinearMap.mdifferentiable, instContMDiffAddSelf, smoothSheafCommRing.instLocalRing_stalk, modelWithCornersSelf_coe_symm, mdifferentiableWithinAt_section, Trivialization.contMDiffAt_iff, VectorBundleCore.contMDiffOn_coordChange, Trivialization.contMDiffOn_symm_trans, inTangentCoordinates_eq_mfderiv_comp, mfderivWithin_projIcc_one, Trivialization.contMDiff_iff, LeftInvariantDerivation.lift_add, Trivialization.contMDiffOn_section_iff, Trivialization.mdifferentiableWithinAt_snd_comp_iffβ‚‚, contMDiffOn_iff_contDiffOn, mfderivWithin_comp_projIcc_one, UpperHalfPlane.mdifferentiable_inv_denom, LeftInvariantDerivation.lift_smul, SmoothPartitionOfUnity.sum_finsupport', Bundle.contMDiffAt_zeroSection, Manifold.pathELength_def, contMDiffWithinAt_prod_module_iff, ModelWithCorners.hasMFDerivAt, instNormedSpaceLieAddGroup, eventually_norm_mfderivWithin_symm_extChartAt_lt, VectorField.mpullback_eq_pullback, UpperHalfPlane.contMDiff_coe, CuspForm.holo', contMDiff_coe_sphere, LeftInvariantDerivation.comp_L, IsOpen.exists_contMDiff_support_eq_aux, modelWithCornersSelf_boundaryless, Manifold.pathELength_eq_lintegral_mfderivWithin_Icc, hasMFDerivAt_neg, ContinuousLinearEquiv.hasMFDerivAt, instIsManifoldRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, SmoothBumpCovering.toSmoothPartitionOfUnity_apply, SmoothPartitionOfUnity.contDiffAt_finsum, mdifferentiableOn_iff_target, contMDiff_model, ContinuousLinearEquiv.hasMFDerivWithinAt, ContDiffOn.contMDiffOn, UpperHalfPlane.contMDiff_inv_denom, hasMFDerivWithinAt_extChartAt, contMDiffWithinAt_pi_space, mdifferentiableAt_totalSpace, UniqueMDiffOn.uniqueMDiffOn_target_inter, mdifferentiableOn_prod_module_iff, contMDiffAt_iff_source_of_mem_source, Metric.exists_smooth_forall_closedBall_subset, instLieGroupRealEuclideanSpaceFinOfNatNatModelWithCornersSelfTopWithTopENatCircle, DifferentiableWithinAt.mdifferentiableWithinAt, Units.instIsManifoldModelWithCornersSelf, LeftInvariantDerivation.evalAt_coe, Trivialization.mdifferentiableAt_totalSpace_iff, ContMDiffOn.coordChangeL, mdifferentiableAt_hom_bundle, SmoothPartitionOfUnity.le_one, Continuous.exists_contMDiff_approx, exists_contMDiffMap_zero_one_nhds_of_isClosed, contMDiffOn_pi_space, Bundle.TotalSpace.isManifold, UniqueDiffWithinAt.uniqueMDiffWithinAt, ContMDiffAt.mfderiv_const, smoothSheafCommRing.isUnit_stalk_iff, contMDiff_vectorSpace_iff_contDiff, LeftInvariantDerivation.map_zero, EuclideanSpace.instIsManifoldSphere, TangentBundle.coordChange_model_space, fdifferential_apply, SmoothBumpFunction.contMDiffAt, MDifferentiableOn.coordChangeL, UniqueMDiffWithinAt.bundle_preimage', mfderiv_extChartAt_comp_mfderivWithin_extChartAt_symm, ContMDiffMap.smul_comp, IsContMDiffRiemannianBundle.exists_contMDiff, SmoothBumpCovering.sum_toSmoothPartitionOfUnity_eq, contMDiffAt_coordChangeL, contMDiff_subtype_coe_Icc, LeftInvariantDerivation.coe_sub, MDifferentiableWithinAt.coordChangeL, Units.instLieGroupModelWithCornersSelf, contDiffWithinAtProp_self_source, LeftInvariantDerivation.left_invariant'', contMDiff_iff_contDiff, contMDiff_iff_target, mdifferentiableOn_extChartAt_symm, UpperHalfPlane.contMDiff_num, SmoothPartitionOfUnity.sum_eq_one', VectorField.mlieBracketWithin_def, UpperHalfPlane.mdifferentiable_denom, mdifferentiableAt_prod_module_iff, writtenInExtChartAt_model_space, contMDiffOn_extChartAt, Trivialization.contMDiffOn_localFrame_baseSet, SmoothPartitionOfUnity.mem_finsupport, IsOpen.exists_contMDiff_support_eq, DifferentiableOn.mdifferentiableOn, ContinuousLinearEquiv.mdifferentiableOn, mdifferentiableWithinAt_iff_differentiableWithinAt, contMDiff_smul, contMDiffOn_continuousLinearMapCoordChange, mfderiv_coe_sphere_injective, contMDiffOn_extChartAt_symm, Bundle.mdifferentiableWithinAt_proj, IsLocalFrameOn.contMDiffOn, contMDiffWithinAt_extChartAt_symm_range_self, ContinuousLinearMap.mfderiv_eq, contMDiffWithinAt_iff_target_of_mem_source, Bundle.contMDiffWithinAt_totalSpace, contMDiffWithinAt_iff_source_of_mem_maximalAtlas, IsMIntegralCurveAt.hasMFDerivAt, Bundle.mdifferentiableOn_proj, SmoothBumpCovering.embeddingPiTangent_injective_mfderiv, ModelWithCorners.mdifferentiableAt, exists_msmooth_support_eq_eq_one_iff, SmoothPartitionOfUnity.coe_finsupport, Emetric.exists_contMDiffMap_forall_closedBall_subset, differentiableWithinAtProp_self_source, Diffeomorph.contDiff, contMDiffOn_symm_coordChangeL, Metric.exists_contMDiffMap_forall_closedBall_subset, IsLocalFrameOn.contMDiffAt, contMDiffAt_hom_bundle, exists_msmooth_zero_iff_one_iff_of_isClosed, LeftInvariantDerivation.map_add, SmoothPartitionOfUnity.finsum_smul_mem_convex, FiberBundle.extChartAt, LeftInvariantDerivation.coe_add, ContDiff.contMDiff, SmoothPartitionOfUnity.sum_le_one', instIsRiemannianManifoldModelWithCornersSelfReal, SmoothBumpCovering.embeddingPiTangent_ker_mfderiv, ModelWithCorners.hasMFDerivWithinAt, SmoothPartitionOfUnity.sum_nonneg, Bundle.contMDiffWithinAt_proj, modelWithCornersSelf_prod, Bundle.contMDiffAt_totalSpace, Diffeomorph.uniqueDiffOn_image, LeftInvariantDerivation.coe_injective, UpperHalfPlane.contMDiff_denom_zpow, SmoothBumpCovering.exists_finset_toSmoothPartitionOfUnity_eventuallyEq, ContinuousLinearMap.mdifferentiableWithinAt, LeftInvariantDerivation.coe_neg, Trivialization.contMDiffOn_section_baseSet_iff, TangentBundle.continuousLinearMapAt_trivializationAt, contMDiffWithinAt_comp_projIcc_iff, mdifferentiableAt_iff_target_of_mem_source, ContMDiffWithinAt.mfderivWithin, IsOpen.exists_msmooth_support_eq_aux, ext_chart_model_space_apply, exists_contMDiff_zero_iff_one_iff_of_isClosed, Bundle.contMDiffOn_proj, contDiffWithinAtProp_self_target, writtenInExtChartAt_extChartAt, Bundle.contMDiff_proj, contMDiffAt_iff_target_of_mem_source, ContMDiffMap.coe_smul, ContinuousLinearMap.hasMFDerivAt, mdifferentiableOn_continuousLinearMapCoordChange, mfderivWithin_eq_fderivWithin, VectorField.eventuallyEq_mpullback_mpullbackWithin_extChartAt, extChartAt_model_space_eq_id, eventually_enorm_mfderiv_extChartAt_lt, enorm_tangentSpace_vectorSpace, DifferentiableWithinAtProp_self, LeftInvariantDerivation.map_smul, oneTangentSpaceIcc_def, contMDiffAt_section_of_mem_baseSet, ModelWithCorners.uniqueMDiffOn, ModelWithCorners.hasMFDerivWithinAt_symm, SmoothPartitionOfUnity.sum_eq_one, mdifferentiableAt_neg, instContMDiffInvβ‚€ModelWithCornersSelf, contMDiffOn_iff_source_of_mem_maximalAtlas, SmoothBumpCovering.embeddingPiTangent_injOn, contMDiffWithinAt_extChartAt_symm_target_self, UniqueMDiffWithinAt.bundle_preimage, contMDiffAt_vectorSpace_iff_contDiffAt, contMDiffWithinAt_iff_contDiffWithinAt, PointedContMDiffMap.instIsScalarTowerSomeENatTopContMDiffMapModelWithCornersSelf, Bundle.mdifferentiableWithinAt_zeroSection, LeftInvariantDerivation.coe_smul, ContinuousLinearEquiv.mdifferentiableWithinAt, ContinuousLinearEquiv.mdifferentiable, writtenInExtChartAt_extChartAt_symm, mdifferentiableWithinAt_comp_projIcc_iff, VectorField.contMDiffWithinAt_mpullbackWithin_extChartAt_symm, mdifferentiableWithinAt_iff_source_of_mem_maximalAtlas, mdifferentiableOn_iff_differentiableOn, TangentBundle.symmL_model_space, Differentiable.mdifferentiable, range_mfderiv_coe_sphere, uniqueMDiffOn_iff_uniqueDiffOn, contMDiffAt_extChartAt, mfderiv_extChartAt_comp_mfderivWithin_extChartAt_symm', SmoothBumpCovering.comp_embeddingPiTangent_mfderiv, ContinuousLinearEquiv.mfderiv_eq, Trivialization.mdifferentiableWithinAt_section_iff, mdifferentiableOn_coordChangeL, contMDiffWithinAt_extChartAt_symm_target, Bundle.contMDiff_zeroSection, FiberBundle.extChartAt_target, contMDiffAt_localFrame_of_mem, ContMDiffVectorBundle.contMDiffOn_coordChangeL, contMDiff_prod_module_iff, VectorBundleCore.IsContMDiff.contMDiffOn_coordChange, mdifferentiableAt_section, mfderivWithin_extChartAt_symm_comp_mfderiv_extChartAt', SmoothPartitionOfUnity.exists_pos_of_mem, Bundle.mdifferentiable_proj, exists_smooth_zero_one_of_isClosed, ModelWithCorners.mdifferentiable, MDifferentiableAt.coordChangeL, mfderivWithin_extChartAt_symm_comp_mfderiv_extChartAt, Diffeomorph.uniqueDiffOn_preimage, SmoothBumpCovering.embeddingPiTangent_injective, exists_contMDiff_support_eq_eq_one_iff, ContMDiffSection.contMDiff, LeftInvariantDerivation.map_sub, SmoothPartitionOfUnity.sum_finsupport_smul_eq_finsum, LeftInvariantDerivation.map_neg, Trivialization.contMDiffWithinAt_iff, UniqueMDiffOn.bundle_preimage, contMDiffWithinAt_iff_source, Bundle.contMDiffAt_section, SmoothPartitionOfUnity.sum_finsupport, contMDiffWithinAt_iff_source_of_mem_source, ContinuousLinearEquiv.coe_toDiffeomorph, exists_smooth_forall_mem_convex_of_local_const, VectorField.mpullbackWithin_eq_pullbackWithin, Manifold.pathELength_eq_lintegral_mfderiv_Icc, norm_tangentSpace_vectorSpace, mdifferentiableAt_iff_source_of_mem_source, contMDiffAt_prod_module_iff, IsManifold.of_discreteTopology, Trivialization.mdifferentiableOn_section_iff, mdifferentiable_jacobiTheta, SmoothBumpCovering.support_toSmoothPartitionOfUnity_subset, hasMFDerivAt_iff_hasFDerivAt, mdifferentiableAt_iff_differentiableAt, mdifferentiableWithinAt_iff_target_of_mem_source, mdifferentiableWithinAt_extChartAt_symm, contMDiffOn_comp_projIcc_iff, SmoothBumpFunction.contMDiff, ModelWithCorners.mdifferentiableOn, modelWithCornersSelf_partialEquiv, contMDiffWithinAt_extChartAt_symm_range, ContMDiffWithinAt.coordChangeL, UpperHalfPlane.contMDiffAt_ofComplex, eventually_norm_mfderivWithin_symm_extChartAt_comp_lt, ModularForm.holo', SmoothPartitionOfUnity.finite_tsupport, Trivialization.contMDiffAt_section_iff, ContMDiffMap.smul_comp', ContMDiffAt.mfderiv, LeftInvariantDerivation.coe_zero, Trivialization.mdifferentiableAt_snd_comp_iffβ‚‚, UpperHalfPlane.contMDiffAt_iff, contMDiffOn_extend_symm, UpperHalfPlane.instIsManifoldComplexModelWithCornersSelfTopWithTopENat, exists_embedding_euclidean_of_compact, VectorPrebundle.contMDiffOn_contMDiffCoordChange, LeftInvariantDerivation.toDerivation_injective, ContinuousLinearMap.contMDiffWithinAt, mdifferentiableAt_coordChangeL, mdifferentiableWithinAt_iff_source_of_mem_source, UpperHalfPlane.mdifferentiable_coe, Trivialization.contMDiffOn_symm, Bundle.contMDiffAt_proj, Trivialization.contMDiffOn_iff, Units.contMDiff_val, contMDiff_tangentBundleModelSpaceHomeomorph, modelWithCornersSelf_coe, SmoothPartitionOfUnity.mem_fintsupport_iff, Emetric.exists_smooth_forall_closedBall_subset, isInvertible_mfderiv_extChartAt, ModularFormClass.holo, mdifferentiableWithinAt_prod_module_iff, mdifferentiableAt_iff_target, contMDiff_pi_space, contMDiffAt_extChartAt', uniqueMDiffWithinAt_iff_uniqueDiffWithinAt, ContinuousLinearMap.hasMFDerivWithinAt, Bundle.contMDiffWithinAt_section, VectorPrebundle.IsContMDiff.exists_contMDiffCoordChange, Bundle.mdifferentiableOn_zeroSection, Trivialization.mdifferentiableWithinAt_totalSpace_iff, ContMDiffSection.mdifferentiable', contMDiff_tangentBundleModelSpaceHomeomorph_symm, ContinuousLinearMap.contMDiffOn, contMDiffOn_coordChangeL, contMDiffOn_model_symm, nnnorm_tangentSpace_vectorSpace, mfderiv_eq_fderiv, EisensteinSeries.eisensteinSeries_SIF_MDifferentiable, ContinuousLinearMap.mdifferentiableOn, ContMDiffSection.mdifferentiableAt, LeftInvariantDerivation.commutator_apply, UpperHalfPlane.mdifferentiableAt_iff, LeftInvariantDerivation.commutator_coe_derivation, instFieldContMDiffRing, isInvertible_mfderivWithin_extChartAt_symm, mdifferentiable_prod_module_iff, VectorField.mlieBracketWithin_apply, ContMDiffSection.mdifferentiable, SmoothPartitionOfUnity.toPartitionOfUnity_toFun, Bundle.mdifferentiable_zeroSection, LeftInvariantDerivation.ext_iff, mfderiv_subtype_coe_Icc_one, VectorField.mlieBracketWithin_eq_lieBracketWithin, VectorField.eventually_contMDiffWithinAt_mpullbackWithin_extChartAt_symm, DifferentiableAt.mdifferentiableAt, contMDiffAt_pi_space, exists_smooth_zero_one_nhds_of_isClosed, contMDiffOn_iff_target, contMDiffOn_vectorSpace_iff_contDiffOn, mfderiv_neg, UpperHalfPlane.contMDiff_smul, contMDiffAt_iff_target, LeftInvariantDerivation.toFun_eq_coe, UpperHalfPlane.contMDiff_denom, Manifold.exists_lt_of_riemannianEDist_lt, SmoothBumpCovering.embeddingPiTangent_coe, EisensteinSeries.eisensteinSeriesSIF_mdifferentiable, SmoothPartitionOfUnity.nonneg', ContMDiffSection.contMDiff_toFun, UpperHalfPlane.mdifferentiable_denom_zpow, exists_contMDiffMap_one_nhds_of_subset_interior, SmoothPartitionOfUnity.sum_le_one, ModelWithCorners.mdifferentiableWithinAt_symm, contMDiffOn_prod_module_iff, eventually_norm_mfderiv_extChartAt_lt, mdifferentiableWithinAt_hom_bundle, Trivialization.contMDiffOn, UpperHalfPlane.mdifferentiable_iff, contMDiffOn_section_of_mem_baseSetβ‚€, exists_contMDiffMap_forall_mem_convex_of_local_const, smooth_functions_tower, mdifferentiable_iff_differentiable, Bundle.mdifferentiableAt_zeroSection, Manifold.exists_lt_locally_constant_of_riemannianEDist_lt, ContinuousLinearEquiv.mdifferentiableAt, UniqueDiffOn.uniqueMDiffOn, mdifferentiableAt_extChartAt, Trivialization.mdifferentiable, UpperHalfPlane.mdifferentiableAt_ofComplex, hasMFDerivWithinAt_iff_hasFDerivWithinAt, LeftInvariantDerivation.instLinearMapClassContMDiffMapModelWithCornersSelfSomeENatTop, LeftInvariantDerivation.coeFnAddMonoidHom_apply, contMDiff_snd_tangentBundle_modelSpace, contMDiffWithinAt_hom_bundle, mem_contMDiffFiberwiseLinear_iff, ContinuousLinearMap.contMDiffAt, contMDiffAt_iff_contDiffAt, Derivation.evalAt_apply, mdifferentiableWithinAt_iff_target, differentiableWithinAtProp_self_target, ContinuousLinearMap.mdifferentiableAt, Trivialization.contMDiffWithinAt_section, SmoothBumpCovering.toSmoothPartitionOfUnity_zero_of_zero, ContMDiff.coordChangeL, SmoothPartitionOfUnity.contMDiff_sum, contMDiffOn_projIcc, Trivialization.contMDiffWithinAt_snd_comp_iffβ‚‚, Metric.exists_contMDiffMap_forall_closedEBall_subset, contMDiff_circleExp, ContMDiffMap.coeFnLinearMap_apply, UpperHalfPlane.mdifferentiable_smul, contMDiffOn_section_of_mem_baseSet, ModelWithCorners.mdifferentiableWithinAt, LeftInvariantDerivation.evalAt_apply

Theorems

NameKindAssumesProvesValidatesDepends On
contDiffGroupoid_le πŸ“–mathematicalWithTop
ENat
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
StructureGroupoid
StructureGroupoid.partialOrder
contDiffGroupoid
β€”contDiffGroupoid.eq_1
groupoid_of_pregroupoid_le
ContDiffOn.of_le
contDiffGroupoid_prod πŸ“–mathematicalOpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
contDiffGroupoid
instTopologicalSpaceProd
ModelProd
instTopologicalSpaceModelProd
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelWithCorners.prod
OpenPartialHomeomorph.prod
β€”ContDiffOn.prodMap
ModelWithCorners.image_eq
Set.prod_image_image_eq
contDiffGroupoid_zero_eq πŸ“–mathematicalβ€”contDiffGroupoid
WithTop
ENat
WithTop.zero
instZeroENat
continuousGroupoid
β€”le_antisymm
le_top
contDiffGroupoid.eq_1
mem_groupoid_of_pregroupoid
contDiffPregroupoid.eq_1
Continuous.comp_continuousOn
ModelWithCorners.continuous
ContinuousOn.comp
OpenPartialHomeomorph.continuousOn
ModelWithCorners.continuousOn_symm
Set.MapsTo.mono_left
Set.mapsTo_preimage
Set.inter_subset_left
instClosedUnderRestrictionContDiffGroupoid πŸ“–mathematicalβ€”ClosedUnderRestriction
contDiffGroupoid
β€”closedUnderRestriction_iff_id_le
StructureGroupoid.le_iff
StructureGroupoid.mem_of_eqOnSource'
ofSet_mem_contDiffGroupoid
instIsManifoldModelSpace πŸ“–mathematicalβ€”IsManifold
chartedSpaceSelf
β€”hasGroupoid_model_space
isManifold_of_contDiffOn πŸ“–mathematicalContDiffOn
ModelWithCorners.toFun'
OpenPartialHomeomorph.toFun'
OpenPartialHomeomorph.trans
OpenPartialHomeomorph.symm
PartialEquiv.toFun
ModelWithCorners.symm
Set
Set.instInter
Set.preimage
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
Set.range
IsManifoldβ€”StructureGroupoid.compatible
hasGroupoid_of_pregroupoid
modelWithCornersSelf_boundaryless πŸ“–mathematicalβ€”ModelWithCorners.Boundaryless
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
modelWithCornersSelf
β€”Set.range_id
modelWithCornersSelf_coe πŸ“–mathematicalβ€”ModelWithCorners.toFun'
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
modelWithCornersSelf
β€”β€”
modelWithCornersSelf_coe_symm πŸ“–mathematicalβ€”PartialEquiv.toFun
ModelWithCorners.symm
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
modelWithCornersSelf
β€”β€”
modelWithCornersSelf_partialEquiv πŸ“–mathematicalβ€”ModelWithCorners.toPartialEquiv
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
modelWithCornersSelf
PartialEquiv.refl
β€”β€”
modelWithCornersSelf_prod πŸ“–mathematicalβ€”modelWithCornersSelf
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelWithCorners.prod
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
β€”ModelWithCorners.ext
PartialEquiv.refl_prod_refl
modelWithCorners_prod_coe πŸ“–mathematicalβ€”ModelWithCorners.toFun'
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelProd
instTopologicalSpaceModelProd
ModelWithCorners.prod
β€”β€”
modelWithCorners_prod_coe_symm πŸ“–mathematicalβ€”PartialEquiv.toFun
ModelProd
ModelWithCorners.symm
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
instTopologicalSpaceModelProd
ModelWithCorners.prod
β€”β€”
modelWithCorners_prod_toPartialEquiv πŸ“–mathematicalβ€”ModelWithCorners.toPartialEquiv
Prod.normedAddCommGroup
Prod.normedSpace
NontriviallyNormedField.toNormedField
NormedAddCommGroup.toSeminormedAddCommGroup
ModelProd
instTopologicalSpaceModelProd
ModelWithCorners.prod
PartialEquiv.prod
β€”β€”
ofSet_mem_contDiffGroupoid πŸ“–mathematicalIsOpenOpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
contDiffGroupoid
OpenPartialHomeomorph.ofSet
β€”contDiffGroupoid.eq_1
mem_groupoid_of_pregroupoid
ContDiff.contDiffOn
contDiff_id
ContDiffOn.congr_mono
ModelWithCorners.right_inv
Set.subset_univ
CompTriple.comp_eq
CompTriple.instId_comp
CompTriple.instIsIdId
symm_trans_mem_contDiffGroupoid πŸ“–mathematicalβ€”OpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
contDiffGroupoid
OpenPartialHomeomorph.trans
OpenPartialHomeomorph.symm
β€”StructureGroupoid.mem_of_eqOnSource
OpenPartialHomeomorph.open_target
ofSet_mem_contDiffGroupoid
OpenPartialHomeomorph.symm_trans_self

---

← Back to Index