Documentation Verification Report

StructureGroupoid

πŸ“ Source: Mathlib/Geometry/Manifold/StructureGroupoid.lean

Statistics

MetricCount
DefinitionsClosedUnderRestriction, Β«term_≫_Β», Β«term_≫ₕ_Β», Pregroupoid, groupoid, property, StructureGroupoid, members, partialOrder, continuousGroupoid, continuousPregroupoid, idGroupoid, idRestrGroupoid, instCompleteLatticeStructureGroupoid, instInfSetStructureGroupoid, instInhabitedPregroupoid, instInhabitedStructureGroupoid, instMembershipOpenPartialHomeomorphStructureGroupoid, instMinStructureGroupoid, instSetLikeStructureGroupoidOpenPartialHomeomorph, instStructureGroupoidOrderBot, instStructureGroupoidOrderTop
22
TheoremsclosedUnderRestriction, comp, id_mem, locality, id_mem, id_mem', le_iff, locality, locality', mem_iff_of_eqOnSource, mem_of_eqOnSource, mem_of_eqOnSource', symm', trans, trans', closedUnderRestriction', closedUnderRestriction_idRestrGroupoid, closedUnderRestriction_iff_id_le, groupoid_of_pregroupoid_le, idRestrGroupoid_mem, instClosedUnderRestrictionContinuousGroupoid, mem_groupoid_of_pregroupoid, mem_pregroupoid_of_eqOnSource
23
Total45

ClosedUnderRestriction

Theorems

NameKindAssumesProvesValidatesDepends On
closedUnderRestriction πŸ“–mathematicalOpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
IsOpen
OpenPartialHomeomorph.restrβ€”β€”

Manifold

Definitions

NameCategoryTheorems
Β«term_≫_Β» πŸ“–CompOpβ€”
Β«term_≫ₕ_Β» πŸ“–CompOpβ€”

Pregroupoid

Definitions

NameCategoryTheorems
groupoid πŸ“–CompOp
3 mathmath: groupoid_of_pregroupoid_le, hasGroupoid_of_pregroupoid, mem_groupoid_of_pregroupoid
property πŸ“–MathDef
2 mathmath: id_mem, mem_groupoid_of_pregroupoid

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”property
IsOpen
Set
Set.instInter
Set.preimage
β€”β€”β€”
id_mem πŸ“–mathematicalβ€”property
Set.univ
β€”β€”
locality πŸ“–β€”IsOpen
Set
Set.instMembership
property
Set.instInter
β€”β€”β€”

StructureGroupoid

Definitions

NameCategoryTheorems
members πŸ“–CompOp
1 mathmath: id_mem'
partialOrder πŸ“–CompOp
4 mathmath: contDiffGroupoid_le, closedUnderRestriction_iff_id_le, le_iff, groupoid_of_pregroupoid_le

Theorems

NameKindAssumesProvesValidatesDepends On
id_mem πŸ“–mathematicalβ€”OpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
OpenPartialHomeomorph.refl
β€”id_mem'
id_mem' πŸ“–mathematicalβ€”OpenPartialHomeomorph
Set
Set.instMembership
members
OpenPartialHomeomorph.refl
β€”β€”
le_iff πŸ“–mathematicalβ€”StructureGroupoid
Preorder.toLE
PartialOrder.toPreorder
partialOrder
OpenPartialHomeomorph
instMembershipOpenPartialHomeomorphStructureGroupoid
β€”β€”
locality πŸ“–β€”IsOpen
Set
Set.instMembership
OpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
OpenPartialHomeomorph.restr
β€”β€”locality'
locality' πŸ“–β€”IsOpen
Set
Set.instMembership
OpenPartialHomeomorph
members
OpenPartialHomeomorph.restr
β€”β€”β€”
mem_iff_of_eqOnSource πŸ“–mathematicalOpenPartialHomeomorph
OpenPartialHomeomorph.eqOnSourceSetoid
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
β€”mem_of_eqOnSource
mem_of_eqOnSource πŸ“–β€”OpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
OpenPartialHomeomorph.eqOnSourceSetoid
β€”β€”mem_of_eqOnSource'
mem_of_eqOnSource' πŸ“–β€”OpenPartialHomeomorph
Set
Set.instMembership
members
OpenPartialHomeomorph.eqOnSourceSetoid
β€”β€”β€”
symm' πŸ“–mathematicalOpenPartialHomeomorph
Set
Set.instMembership
members
OpenPartialHomeomorph.symmβ€”β€”
trans πŸ“–mathematicalOpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
OpenPartialHomeomorph.transβ€”trans'
trans' πŸ“–mathematicalOpenPartialHomeomorph
Set
Set.instMembership
members
OpenPartialHomeomorph.transβ€”β€”

(root)

Definitions

NameCategoryTheorems
ClosedUnderRestriction πŸ“–CompData
4 mathmath: instClosedUnderRestrictionContDiffGroupoid, closedUnderRestriction_iff_id_le, instClosedUnderRestrictionContinuousGroupoid, closedUnderRestriction_idRestrGroupoid
Pregroupoid πŸ“–CompDataβ€”
StructureGroupoid πŸ“–CompData
24 mathmath: StructureGroupoid.mem_iff_of_eqOnSource, contDiffGroupoid_le, OpenPartialHomeomorph.isLocalStructomorphWithinAt_iff, OpenPartialHomeomorph.isLocalStructomorphWithinAt_source_iff, hasGroupoid_inf_iff, closedUnderRestriction_iff_id_le, symm_trans_mem_contDiffGroupoid, StructureGroupoid.compatible_of_mem_maximalAtlas, StructureGroupoid.compatible, StructureGroupoid.le_iff, IsManifold.compatible_of_mem_maximalAtlas, groupoid_of_pregroupoid_le, idRestrGroupoid_mem, StructureGroupoid.trans_restricted, OpenPartialHomeomorph.isLocalStructomorphWithinAt_iff', ofSet_mem_contDiffGroupoid, Structomorph.mem_groupoid, ContinuousGroupoid.mem_of_source_eq_empty, StructureGroupoid.id_mem, ContDiffGroupoid.mem_of_source_eq_empty, mem_contMDiffFiberwiseLinear_iff, HasGroupoid.compatible, mem_maximalAtlas_iff, mem_groupoid_of_pregroupoid
continuousGroupoid πŸ“–CompOp
4 mathmath: contDiffGroupoid_zero_eq, instClosedUnderRestrictionContinuousGroupoid, ContinuousGroupoid.mem_of_source_eq_empty, hasGroupoid_continuousGroupoid
continuousPregroupoid πŸ“–CompOpβ€”
idGroupoid πŸ“–CompOpβ€”
idRestrGroupoid πŸ“–CompOp
3 mathmath: closedUnderRestriction_iff_id_le, idRestrGroupoid_mem, closedUnderRestriction_idRestrGroupoid
instCompleteLatticeStructureGroupoid πŸ“–CompOpβ€”
instInfSetStructureGroupoid πŸ“–CompOpβ€”
instInhabitedPregroupoid πŸ“–CompOpβ€”
instInhabitedStructureGroupoid πŸ“–CompOpβ€”
instMembershipOpenPartialHomeomorphStructureGroupoid πŸ“–CompOp
20 mathmath: StructureGroupoid.mem_iff_of_eqOnSource, OpenPartialHomeomorph.isLocalStructomorphWithinAt_iff, OpenPartialHomeomorph.isLocalStructomorphWithinAt_source_iff, symm_trans_mem_contDiffGroupoid, StructureGroupoid.compatible_of_mem_maximalAtlas, StructureGroupoid.compatible, StructureGroupoid.le_iff, IsManifold.compatible_of_mem_maximalAtlas, idRestrGroupoid_mem, StructureGroupoid.trans_restricted, OpenPartialHomeomorph.isLocalStructomorphWithinAt_iff', ofSet_mem_contDiffGroupoid, Structomorph.mem_groupoid, ContinuousGroupoid.mem_of_source_eq_empty, StructureGroupoid.id_mem, ContDiffGroupoid.mem_of_source_eq_empty, mem_contMDiffFiberwiseLinear_iff, HasGroupoid.compatible, mem_maximalAtlas_iff, mem_groupoid_of_pregroupoid
instMinStructureGroupoid πŸ“–CompOp
1 mathmath: hasGroupoid_inf_iff
instSetLikeStructureGroupoidOpenPartialHomeomorph πŸ“–CompOpβ€”
instStructureGroupoidOrderBot πŸ“–CompOpβ€”
instStructureGroupoidOrderTop πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
closedUnderRestriction' πŸ“–mathematicalOpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
IsOpen
OpenPartialHomeomorph.restrβ€”ClosedUnderRestriction.closedUnderRestriction
closedUnderRestriction_idRestrGroupoid πŸ“–mathematicalβ€”ClosedUnderRestriction
idRestrGroupoid
β€”IsOpen.inter
OpenPartialHomeomorph.EqOnSource.restr
IsOpen.interior_eq
closedUnderRestriction_iff_id_le πŸ“–mathematicalβ€”ClosedUnderRestriction
StructureGroupoid
Preorder.toLE
PartialOrder.toPreorder
StructureGroupoid.partialOrder
idRestrGroupoid
β€”StructureGroupoid.le_iff
StructureGroupoid.mem_of_eqOnSource
OpenPartialHomeomorph.ext
Set.ext
IsOpen.interior_eq
Set.univ_inter
closedUnderRestriction'
StructureGroupoid.id_mem
OpenPartialHomeomorph.ofSet_trans
StructureGroupoid.trans
idRestrGroupoid_mem
groupoid_of_pregroupoid_le πŸ“–mathematicalPregroupoid.propertyStructureGroupoid
Preorder.toLE
PartialOrder.toPreorder
StructureGroupoid.partialOrder
Pregroupoid.groupoid
β€”StructureGroupoid.le_iff
mem_groupoid_of_pregroupoid
idRestrGroupoid_mem πŸ“–mathematicalIsOpenOpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
idRestrGroupoid
OpenPartialHomeomorph.ofSet
β€”refl
IsPreorder.toRefl
IsEquiv.toIsPreorder
Quotient.instIsEquivEquiv
instClosedUnderRestrictionContinuousGroupoid πŸ“–mathematicalβ€”ClosedUnderRestriction
continuousGroupoid
β€”closedUnderRestriction_iff_id_le
le_top
mem_groupoid_of_pregroupoid πŸ“–mathematicalβ€”OpenPartialHomeomorph
StructureGroupoid
instMembershipOpenPartialHomeomorphStructureGroupoid
Pregroupoid.groupoid
Pregroupoid.property
OpenPartialHomeomorph.toFun'
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
OpenPartialHomeomorph.symm
PartialEquiv.target
β€”β€”
mem_pregroupoid_of_eqOnSource πŸ“–β€”OpenPartialHomeomorph
OpenPartialHomeomorph.eqOnSourceSetoid
Pregroupoid.property
OpenPartialHomeomorph.toFun'
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
β€”β€”Pregroupoid.congr
OpenPartialHomeomorph.open_source
Set.EqOn.symm
OpenPartialHomeomorph.EqOnSource.eqOn

---

← Back to Index