Documentation Verification Report

Stalks

πŸ“ Source: Mathlib/Geometry/RingedSpace/Stalks.lean

Statistics

MetricCount
DefinitionsstalkMap, restrictStalkIso, stalkIso
3
TheoremsofRestrict_stalkMap_isIso, restrictStalkIso_hom_eq_germ, restrictStalkIso_hom_eq_germ_apply, restrictStalkIso_hom_eq_germ_assoc, restrictStalkIso_inv_eq_germ, restrictStalkIso_inv_eq_germ_apply, restrictStalkIso_inv_eq_germ_assoc, restrictStalkIso_inv_eq_ofRestrict, comp, congr_hom, congr_point, id, isIso, stalkSpecializes_stalkMap, stalkSpecializes_stalkMap_apply, stalkSpecializes_stalkMap_assoc, stalkMap_germ, stalkMap_germ_apply, stalkMap_germ_assoc
19
Total22

AlgebraicGeometry.PresheafedSpace

Definitions

NameCategoryTheorems
restrictStalkIso πŸ“–CompOp
7 mathmath: restrictStalkIso_hom_eq_germ, restrictStalkIso_inv_eq_germ_apply, restrictStalkIso_hom_eq_germ_apply, restrictStalkIso_inv_eq_germ, restrictStalkIso_inv_eq_ofRestrict, restrictStalkIso_hom_eq_germ_assoc, restrictStalkIso_inv_eq_germ_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
ofRestrict_stalkMap_isIso πŸ“–mathematicalTopology.IsOpenEmbedding
TopCat.carrier
carrier
TopCat.str
instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
CategoryTheory.IsIso
TopCat.Presheaf.stalk
presheaf
restrict
Hom.base
ofRestrict
Hom.stalkMap
β€”restrictStalkIso_inv_eq_ofRestrict
CategoryTheory.Iso.isIso_inv
restrictStalkIso_hom_eq_germ πŸ“–mathematicalTopology.IsOpenEmbedding
TopCat.carrier
carrier
TopCat.str
instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
restrict
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
presheaf
Opposite.op
TopCat.Presheaf.stalk
TopCat.Presheaf.germ
CategoryTheory.Iso.hom
restrictStalkIso
IsOpenMap.functor
Topology.IsOpenEmbedding.isOpenMap
Set
Set.instMembership
SetLike.coe
β€”CategoryTheory.Limits.colimit.ΞΉ_pre
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
Topology.IsOpenEmbedding.isOpenMap
restrictStalkIso_hom_eq_germ_apply πŸ“–mathematicalTopology.IsOpenEmbedding
TopCat.carrier
carrier
TopCat.str
instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
TopCat.Presheaf.stalk
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor.op
IsOpenMap.functor
presheaf
CategoryTheory.Iso.hom
restrictStalkIso
CategoryTheory.Functor.obj
Opposite.op
TopCat.Presheaf.germ
Topology.IsOpenEmbedding.isOpenMap
Set
Set.instMembership
SetLike.coe
β€”Topology.IsOpenEmbedding.isOpenMap
CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
restrictStalkIso_hom_eq_germ
restrictStalkIso_hom_eq_germ_assoc πŸ“–mathematicalTopology.IsOpenEmbedding
TopCat.carrier
carrier
TopCat.str
instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
restrict
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
presheaf
Opposite.op
TopCat.Presheaf.stalk
TopCat.Presheaf.germ
CategoryTheory.Iso.hom
restrictStalkIso
IsOpenMap.functor
Topology.IsOpenEmbedding.isOpenMap
Set
Set.instMembership
SetLike.coe
β€”Topology.IsOpenEmbedding.isOpenMap
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictStalkIso_hom_eq_germ
restrictStalkIso_inv_eq_germ πŸ“–mathematicalTopology.IsOpenEmbedding
TopCat.carrier
carrier
TopCat.str
instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
presheaf
Opposite.op
IsOpenMap.functor
Topology.IsOpenEmbedding.isOpenMap
TopCat.Presheaf.stalk
restrict
TopCat.Presheaf.germ
Set
Set.instMembership
SetLike.coe
CategoryTheory.Iso.inv
restrictStalkIso
β€”Topology.IsOpenEmbedding.isOpenMap
restrictStalkIso_hom_eq_germ
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
restrictStalkIso_inv_eq_germ_apply πŸ“–mathematicalTopology.IsOpenEmbedding
TopCat.carrier
carrier
TopCat.str
instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
TopCat.Presheaf.stalk
presheaf
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
CategoryTheory.Functor.op
IsOpenMap.functor
CategoryTheory.Iso.inv
restrictStalkIso
CategoryTheory.Functor.obj
Opposite.op
Topology.IsOpenEmbedding.isOpenMap
TopCat.Presheaf.germ
Set
Set.instMembership
SetLike.coe
β€”Topology.IsOpenEmbedding.isOpenMap
CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
restrictStalkIso_inv_eq_germ
restrictStalkIso_inv_eq_germ_assoc πŸ“–mathematicalTopology.IsOpenEmbedding
TopCat.carrier
carrier
TopCat.str
instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
TopologicalSpace.Opens
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
presheaf
Opposite.op
IsOpenMap.functor
Topology.IsOpenEmbedding.isOpenMap
TopCat.Presheaf.stalk
TopCat.Presheaf.germ
Set
Set.instMembership
SetLike.coe
restrict
CategoryTheory.Iso.inv
restrictStalkIso
β€”Topology.IsOpenEmbedding.isOpenMap
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictStalkIso_inv_eq_germ
restrictStalkIso_inv_eq_ofRestrict πŸ“–mathematicalTopology.IsOpenEmbedding
TopCat.carrier
carrier
TopCat.str
instTopologicalSpaceCarrierCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
CategoryTheory.Iso.inv
TopCat.Presheaf.stalk
restrict
presheaf
restrictStalkIso
Hom.stalkMap
ofRestrict
β€”CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
Topology.IsOpenEmbedding.isOpenMap
Set.image_preimage_subset
CategoryTheory.Iso.comp_inv_eq
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Limits.colimit.ΞΉ_map_assoc
CategoryTheory.Limits.colimit.ΞΉ_pre
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Limits.colimit.w
stalkMap_germ πŸ“–mathematicalTopCat.carrier
carrier
TopologicalSpace.Opens
instTopologicalSpaceCarrierCarrier
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
Hom.base
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
presheaf
Opposite.op
TopCat.Presheaf.stalk
TopCat.Presheaf.germ
Hom.stalkMap
TopCat.Presheaf
TopCat.instCategoryPresheaf
TopCat.Presheaf.pushforward
CategoryTheory.NatTrans.app
Hom.c
TopologicalSpace.Opens.map
β€”Hom.stalkMap.eq_1
TopCat.Presheaf.stalkFunctor_map_germ_assoc
TopCat.Presheaf.stalkPushforward_germ
stalkMap_germ_apply πŸ“–mathematicalTopCat.carrier
carrier
TopologicalSpace.Opens
instTopologicalSpaceCarrierCarrier
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
Hom.base
TopCat.Presheaf.stalk
presheaf
Hom.stalkMap
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
Opposite.op
TopCat.Presheaf.germ
TopologicalSpace.Opens.map
CategoryTheory.NatTrans.app
TopCat.Presheaf
TopCat.instCategoryPresheaf
TopCat.Presheaf.pushforward
Hom.c
β€”CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
stalkMap_germ
stalkMap_germ_assoc πŸ“–mathematicalTopCat.carrier
carrier
TopologicalSpace.Opens
instTopologicalSpaceCarrierCarrier
SetLike.instMembership
TopologicalSpace.Opens.instSetLike
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
Hom.base
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
presheaf
Opposite.op
TopCat.Presheaf.stalk
TopCat.Presheaf.germ
Hom.stalkMap
TopCat.Presheaf
TopCat.instCategoryPresheaf
TopCat.Presheaf.pushforward
CategoryTheory.NatTrans.app
Hom.c
TopologicalSpace.Opens.map
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
stalkMap_germ

AlgebraicGeometry.PresheafedSpace.Hom

Definitions

NameCategoryTheorems
stalkMap πŸ“–CompOp
27 mathmath: AlgebraicGeometry.PresheafedSpace.IsOpenImmersion.stalk_iso, AlgebraicGeometry.PresheafedSpace.stalkMap_germ, AlgebraicGeometry.localRingHom_comp_stalkIso_apply, AlgebraicGeometry.PresheafedSpace.stalkMap_germ_assoc, AlgebraicGeometry.PresheafedSpace.stalkMap.stalkSpecializes_stalkMap, AlgebraicGeometry.PresheafedSpace.stalkMap.stalkSpecializes_stalkMap_apply, AlgebraicGeometry.Spec_map_localization_isIso, AlgebraicGeometry.PresheafedSpace.stalkMap.congr, AlgebraicGeometry.PresheafedSpace.ofRestrict_stalkMap_isIso, AlgebraicGeometry.PresheafedSpace.stalkMap.id, AlgebraicGeometry.stalkMap_toStalk, AlgebraicGeometry.LocallyRingedSpace.Hom.prop, AlgebraicGeometry.PresheafedSpace.stalkMap.isIso, AlgebraicGeometry.LocallyRingedSpace.HasCoequalizer.coequalizer_Ο€_stalk_isLocalHom, AlgebraicGeometry.PresheafedSpace.stalkMap_germ_apply, AlgebraicGeometry.LocallyRingedSpace.isLocalHomStalkMap', AlgebraicGeometry.stalkMap_toStalk_apply, AlgebraicGeometry.SheafedSpace.IsOpenImmersion.stalk_iso, AlgebraicGeometry.isIso_SpecMap_stakMap_localization, AlgebraicGeometry.PresheafedSpace.stalkMap.congr_hom, AlgebraicGeometry.PresheafedSpace.stalkMap.comp, AlgebraicGeometry.LocallyRingedSpace.toStalk_stalkMap_toΞ“Spec, AlgebraicGeometry.PresheafedSpace.stalkMap.stalkSpecializes_stalkMap_assoc, AlgebraicGeometry.PresheafedSpace.restrictStalkIso_inv_eq_ofRestrict, AlgebraicGeometry.LocallyRingedSpace.isLocalHom_stalkMap_congr, AlgebraicGeometry.localRingHom_comp_stalkIso, AlgebraicGeometry.PresheafedSpace.stalkMap.congr_point

AlgebraicGeometry.PresheafedSpace.stalkMap

Definitions

NameCategoryTheorems
stalkIso πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–mathematicalβ€”AlgebraicGeometry.PresheafedSpace.Hom.stalkMap
CategoryTheory.CategoryStruct.comp
AlgebraicGeometry.PresheafedSpace
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.PresheafedSpace.categoryOfPresheafedSpaces
TopCat.Presheaf.stalk
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.PresheafedSpace.presheaf
DFunLike.coe
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
β€”CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.ΞΉ_colimMap_assoc
CategoryTheory.Functor.map_id
CategoryTheory.Limits.colimit.ΞΉ_pre
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Limits.colimit.ΞΉ_pre_assoc
congr_hom πŸ“–mathematicalβ€”AlgebraicGeometry.PresheafedSpace.Hom.stalkMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
TopCat.Presheaf.stalk
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.PresheafedSpace.presheaf
DFunLike.coe
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
CategoryTheory.eqToHom
β€”congr
CategoryTheory.eqToHom_refl
CategoryTheory.Category.comp_id
congr_point πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
TopCat.Presheaf.stalk
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.PresheafedSpace.presheaf
DFunLike.coe
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.PresheafedSpace.Hom.stalkMap
CategoryTheory.eqToHom
β€”congr
id πŸ“–mathematicalβ€”AlgebraicGeometry.PresheafedSpace.Hom.stalkMap
CategoryTheory.CategoryStruct.id
AlgebraicGeometry.PresheafedSpace
CategoryTheory.Category.toCategoryStruct
AlgebraicGeometry.PresheafedSpace.categoryOfPresheafedSpaces
TopCat.Presheaf.stalk
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.PresheafedSpace.presheaf
β€”TopCat.Presheaf.stalkPushforward.id
CategoryTheory.Functor.map_comp
TopCat.Presheaf.ext
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_id
isIso πŸ“–mathematicalβ€”CategoryTheory.IsIso
TopCat.Presheaf.stalk
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.PresheafedSpace.presheaf
DFunLike.coe
TopCat.carrier
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
AlgebraicGeometry.PresheafedSpace.Hom.base
AlgebraicGeometry.PresheafedSpace.Hom.stalkMap
β€”CategoryTheory.IsIso.hom_inv_id
AlgebraicGeometry.PresheafedSpace.id_base
TopCat.id_app
CategoryTheory.Category.assoc
congr_point
comp
CategoryTheory.IsIso.inv_hom_id
congr_hom
id
CategoryTheory.eqToHom_trans_assoc
CategoryTheory.eqToHom_refl
CategoryTheory.Category.id_comp
stalkSpecializes_stalkMap πŸ“–mathematicalSpecializes
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.PresheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
TopCat.Presheaf.stalk
AlgebraicGeometry.PresheafedSpace.presheaf
DFunLike.coe
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.Hom.hom
AlgebraicGeometry.PresheafedSpace.Hom.base
TopCat.Presheaf.stalkSpecializes
ContinuousMap.map_specializes
AlgebraicGeometry.PresheafedSpace.Hom.stalkMap
CategoryTheory.ConcreteCategory.hom
TopCat
TopCat.instCategory
TopCat.instConcreteCategoryContinuousMapCarrier
β€”ContinuousMap.map_specializes
CategoryTheory.Limits.colimit.hom_ext
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.colimit.ΞΉ_desc_assoc
CategoryTheory.Limits.ΞΉ_colimMap_assoc
CategoryTheory.Limits.colimit.ΞΉ_pre
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.Category.assoc
CategoryTheory.Limits.colimit.pre_desc
CategoryTheory.Limits.colimit.map_desc
CategoryTheory.Limits.colimit.ΞΉ_desc
stalkSpecializes_stalkMap_apply πŸ“–mathematicalSpecializes
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.PresheafedSpace.instTopologicalSpaceCarrierCarrier
DFunLike.coe
TopCat.Presheaf.stalk
AlgebraicGeometry.PresheafedSpace.presheaf
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.Hom.hom
AlgebraicGeometry.PresheafedSpace.Hom.base
CategoryTheory.ConcreteCategory.hom
AlgebraicGeometry.PresheafedSpace.Hom.stalkMap
TopCat.Presheaf.stalkSpecializes
ContinuousMap.map_specializes
β€”ContinuousMap.map_specializes
CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
stalkSpecializes_stalkMap
stalkSpecializes_stalkMap_assoc πŸ“–mathematicalSpecializes
TopCat.carrier
AlgebraicGeometry.PresheafedSpace.carrier
AlgebraicGeometry.PresheafedSpace.instTopologicalSpaceCarrierCarrier
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
TopCat.Presheaf.stalk
AlgebraicGeometry.PresheafedSpace.presheaf
DFunLike.coe
ContinuousMap
TopCat.str
ContinuousMap.instFunLike
TopCat.Hom.hom
AlgebraicGeometry.PresheafedSpace.Hom.base
TopCat.Presheaf.stalkSpecializes
ContinuousMap.map_specializes
AlgebraicGeometry.PresheafedSpace.Hom.stalkMap
β€”ContinuousMap.map_specializes
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
stalkSpecializes_stalkMap

---

← Back to Index