Documentation Verification Report

Archimedean

📁 Source: Mathlib/GroupTheory/Archimedean.lean

Statistics

MetricCount
Definitions0
Theoremscyclic_of_isolated_zero, cyclic_of_min, exists_isLeast_pos, subgroup_cyclic, cyclic_of_isolated_one, cyclic_of_min, exists_isLeast_one_lt
7
Total7

AddSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
cyclic_of_isolated_zero 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
AddSubgroup
AddCommGroup.toAddGroup
instSetLike
Set.Ioo
closure
Set.instSingletonSet
eq_or_ne
closure_singleton_zero
cyclic_of_min
exists_isLeast_pos
cyclic_of_min 📖mathematicalIsLeast
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
setOf
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
instSetLike
Preorder.toLT
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
closure
Set
Set.instSingletonSet
le_antisymm
existsUnique_zsmul_near_of_pos
sub_mem
zsmul_mem
lt_of_le_of_ne
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
not_le
sub_lt_iff_lt_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_one_zsmul
sub_eq_zero
mem_closure_singleton
closure_le
Set.singleton_subset_iff
SetLike.mem_coe
exists_isLeast_pos 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
AddSubgroup
AddCommGroup.toAddGroup
instSetLike
Set.Ioo
IsLeast
Preorder.toLE
setOf
SetLike.instMembership
existsUnique_add_zsmul_mem_Ico
CanLift.prf
instCanLiftIntNatCastLeOfNat
zsmul_lt_zsmul_iff_left
zero_zsmul
LT.lt.trans_le
zero_add
sub_le_iff_le_add
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
add_one_zsmul
natCast_zsmul
Nat.cast_succ
sub_add_cancel
bot_or_exists_ne_zero
abs_pos
abs_mem_iff
AddSubgroupClass.toNegMemClass
instAddSubgroupClass
mem_lowerBounds
not_le
LE.le.trans_lt
nsmul_nonneg
LT.lt.le
lt_or_ge
Set.disjoint_left
sub_mem
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
sub_lt_iff_lt_add'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
le_imp_le_of_le_of_le
nsmul_le_nsmul_left
add_le_add_left
Nat.instIsOrderedAddMonoid
le_refl
succ_nsmul
add_lt_add_left

Int

Theorems

NameKindAssumesProvesValidatesDepends On
subgroup_cyclic 📖mathematicalAddSubgroup.closure
instAddGroup
Set
Set.instSingletonSet
Set.eq_empty_of_forall_notMem
LT.lt.not_ge
AddSubgroup.cyclic_of_isolated_zero
instIsOrderedAddMonoid
instArchimedeanInt
one_pos
instZeroLEOneClass

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
cyclic_of_isolated_one 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Subgroup
CommGroup.toGroup
instSetLike
Set.Ioo
closure
Set.instSingletonSet
eq_or_ne
closure_singleton_one
cyclic_of_min
exists_isLeast_one_lt
cyclic_of_min 📖mathematicalIsLeast
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
setOf
Subgroup
CommGroup.toGroup
SetLike.instMembership
instSetLike
Preorder.toLT
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
closure
Set
Set.instSingletonSet
le_antisymm
existsUnique_zpow_near_of_one_lt
div_mem
zpow_mem
lt_of_le_of_ne
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
not_le
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
zpow_add_one
div_eq_one
closure_le
exists_isLeast_one_lt 📖mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
Subgroup
CommGroup.toGroup
instSetLike
Set.Ioo
IsLeast
Preorder.toLE
setOf
SetLike.instMembership
existsUnique_mul_zpow_mem_Ico
CanLift.prf
instCanLiftIntNatCastLeOfNat
zpow_lt_zpow_iff_right
zpow_zero
LT.lt.trans_le
one_mul
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
zpow_natCast
div_mul_cancel
bot_or_exists_ne_one
one_lt_mabs
mabs_mem_iff
SubgroupClass.toInvMemClass
instSubgroupClass
LE.le.trans_lt
one_le_pow_of_one_le'
LT.lt.le
lt_or_ge
Set.disjoint_left
div_mem
one_lt_div'
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
RightCancelSemigroup.toIsRightCancelMul
div_lt_iff_lt_mul'
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
le_imp_le_of_le_of_le
pow_le_pow_right'
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
le_refl
pow_succ
mul_lt_mul_left

---

← Back to Index