Documentation Verification Report

ArchimedeanDensely

πŸ“ Source: Mathlib/GroupTheory/ArchimedeanDensely.lean

Statistics

MetricCount
Definitionsclosure_equiv_closure, int_orderAddMonoidIso_of_isLeast_pos, closure_equiv_closure, multiplicative_int_orderMonoidIso_of_isLeast_one_lt, instFintypeAddEquivInt, instLocallyFiniteOrderAdditive, instLocallyFiniteOrderMultiplicative, instLocallyFiniteOrderUnits, instLocallyFiniteOrderUnitsWithZero, instUniqueOrderAddMonoidIsoInt, instUniqueOrderAddMonoidIsoIntOrderDual
11
TheoremsisLeast_of_closure_iff_eq_abs, mem_closure_singleton_iff_existsUnique_zsmul, of_locallyFiniteOrder, addEquiv_eq_refl_or_neg, card_fintype_addEquiv, not_denselyOrdered, univ_addEquiv, discrete_iff_not_denselyOrdered, discrete_or_denselyOrdered, isAddCyclic_iff_not_denselyOrdered, wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete, wellFoundedOn_setOf_le_lt_iff_nonempty_discrete, discrete_iff_not_denselyOrdered, discrete_or_denselyOrdered, isCyclic_iff_not_denselyOrdered, wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete, wellFoundedOn_setOf_le_lt_iff_nonempty_discrete, discrete_iff_not_denselyOrdered, discrete_or_denselyOrdered, wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete_of_ne_zero, wellFoundedOn_setOf_le_lt_iff_nonempty_discrete_of_ne_zero, of_locallyFiniteOrder, addArchimedean, mulArchimedean, isLeast_of_closure_iff_eq_mabs, mem_closure_singleton_iff_existsUnique_zpow, mulArchimedean_iff, denselyOrdered_iff, denselyOrdered_set_iff_subsingleton, mulArchimedean_iff, denselyOrdered_additive_iff, denselyOrdered_multiplicative_iff, exists_pow_ltβ‚€, instDenselyOrderedAdditive, instDenselyOrderedMultiplicative, instDenselyOrderedWithZeroOfNoMinOrder, instWellFoundedGTWithZeroMultiplicativeIntLeOne, not_denselyOrdered_withZero_int
38
Total49

AddSubgroup

Theorems

NameKindAssumesProvesValidatesDepends On
isLeast_of_closure_iff_eq_abs πŸ“–mathematicalβ€”IsLeast
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
setOf
AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
instSetLike
closure
Set
Set.instSingletonSet
Preorder.toLT
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
abs
β€”cyclic_of_min
mem_closure_singleton_self
mem_closure_singleton
mul_zsmul
one_zsmul
Int.mul_eq_one_iff_eq_one_or_neg_one
sup_of_le_left
neg_le_self_iff
LT.lt.le
neg_zsmul
neg_neg
sup_of_le_right
sup_eq_left
LE.le.trans
neg_nonpos
IsOrderedAddMonoid.toAddLeftMono
abs.eq_1
mul_zsmul'
one_mul
zsmul_le_zsmul_iff_left
zero_add
Mathlib.Tactic.Contrapose.contrapose₁
not_lt
Left.nonneg_neg_iff
zsmul_nonneg
closure_singleton_neg
abs_neg
le_of_not_ge
mem_closure_singleton_iff_existsUnique_zsmul πŸ“–mathematicalβ€”AddSubgroup
AddCommGroup.toAddGroup
SetLike.instMembership
instSetLike
closure
Set
Set.instSingletonSet
ExistsUnique
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
β€”mem_closure_singleton
Ne.lt_or_gt
StrictAnti.injective
zsmul_left_strictAnti
StrictMono.injective
zsmul_left_strictMono
ExistsUnique.exists

Archimedean

Theorems

NameKindAssumesProvesValidatesDepends On
of_locallyFiniteOrder πŸ“–mathematicalβ€”Archimedean
AddCommGroup.toAddCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”comap
instArchimedeanInt
LocallyFiniteOrder.orderAddMonoidHom_strictMono

Int

Theorems

NameKindAssumesProvesValidatesDepends On
addEquiv_eq_refl_or_neg πŸ“–mathematicalβ€”AddEquiv.refl
AddEquiv.neg
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
β€”not_isOfFinAddOrder_of_isAddTorsionFree
instIsAddTorsionFree
AddEquiv.map_ne_zero_iff
AddSubgroup.zmultiples_eq_zmultiples_iff
zmultiples_one
AddEquivClass.instAddMonoidHomClass
AddEquiv.instAddEquivClass
AddSubgroup.map_equiv_top
AddMonoidHom.map_zmultiples
card_fintype_addEquiv πŸ“–mathematicalβ€”Fintype.card
AddEquiv
instFintypeAddEquivInt
β€”β€”
not_denselyOrdered πŸ“–mathematicalβ€”DenselyOrderedβ€”LinearOrderedAddCommGroup.discrete_iff_not_denselyOrdered
instIsOrderedAddMonoid
instArchimedeanInt
univ_addEquiv πŸ“–mathematicalβ€”Finset.univ
AddEquiv
instFintypeAddEquivInt
Finset.cons
AddEquiv.neg
AddCommGroup.toDivisionAddCommMonoid
instAddCommGroup
Finset
Finset.instSingleton
AddEquiv.refl
β€”β€”

LinearOrderedAddCommGroup

Definitions

NameCategoryTheorems
closure_equiv_closure πŸ“–CompOpβ€”
int_orderAddMonoidIso_of_isLeast_pos πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
discrete_iff_not_denselyOrdered πŸ“–mathematicalβ€”OrderAddMonoidIso
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLatticeInt
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
DenselyOrdered
Preorder.toLT
β€”exists_between
denselyOrdered_iff_of_orderIsoClass
OrderAddMonoidIso.instOrderIsoClass
one_pos
Int.instZeroLEOneClass
discrete_or_denselyOrdered
discrete_or_denselyOrdered πŸ“–mathematicalβ€”OrderAddMonoidIso
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLatticeInt
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
DenselyOrdered
Preorder.toLT
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
isAddCyclic_iff_not_denselyOrdered πŸ“–mathematicalβ€”IsAddCyclic
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
DenselyOrdered
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”discrete_iff_not_denselyOrdered
isAddCyclic_iff_nonempty_equiv_int
wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete πŸ“–mathematicalβ€”Set.WellFoundedOn
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
OrderAddMonoidIso
instLatticeInt
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”wellFoundedOn_setOf_le_lt_iff_nonempty_discrete
Set.WellFoundedOn.mono'
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Set.WellFoundedOn.mapsTo
wellFoundedOn_setOf_le_lt_iff_nonempty_discrete πŸ“–mathematicalβ€”Set.WellFoundedOn
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
OrderAddMonoidIso
instLatticeInt
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”discrete_iff_not_denselyOrdered
exists_ne
le_rfl
WellFounded.wellFounded_iff_has_min
LT.lt.le
exists_between
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
lt_of_le_of_ne
Mathlib.Tactic.Push.not_forall_eq
sub_nonneg
covariant_swap_add_of_covariant_add
Set.range_nonempty
add_smul
one_smul
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_lt_of_covariant_le
OrderAddMonoidIso.instOrderIsoClass
BddBelow.wellFoundedOn_lt
Set.WellFoundedOn.mono'
contravariant_swap_add_of_contravariant_add
Set.WellFoundedOn.mapsTo
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT

LinearOrderedCommGroup

Definitions

NameCategoryTheorems
closure_equiv_closure πŸ“–CompOpβ€”
multiplicative_int_orderMonoidIso_of_isLeast_one_lt πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
discrete_iff_not_denselyOrdered πŸ“–mathematicalβ€”OrderMonoidIso
Multiplicative
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Multiplicative.preorder
instLatticeInt
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Multiplicative.mul
DenselyOrdered
Preorder.toLT
β€”Equiv.nonempty_congr
LinearOrderedAddCommGroup.discrete_iff_not_denselyOrdered
Additive.isOrderedAddMonoid
Additive.instArchimedean
denselyOrdered_iff_of_orderIsoClass
OrderIso.instOrderIsoClass
discrete_or_denselyOrdered πŸ“–mathematicalβ€”OrderMonoidIso
Multiplicative
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Multiplicative.preorder
instLatticeInt
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Multiplicative.mul
DenselyOrdered
Preorder.toLT
β€”Equiv.nonempty_congr
LinearOrderedAddCommGroup.discrete_or_denselyOrdered
Additive.isOrderedAddMonoid
Additive.instArchimedean
isCyclic_iff_not_denselyOrdered πŸ“–mathematicalβ€”IsCyclic
DivInvMonoid.toZPow
Group.toDivInvMonoid
CommGroup.toGroup
DenselyOrdered
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”isAddCyclic_additive_iff
LinearOrderedAddCommGroup.isAddCyclic_iff_not_denselyOrdered
Additive.isOrderedAddMonoid
Additive.instArchimedean
Additive.instNontrivial
wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete πŸ“–mathematicalβ€”Set.WellFoundedOn
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
OrderMonoidIso
Multiplicative
Multiplicative.preorder
instLatticeInt
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Multiplicative.mul
β€”wellFoundedOn_setOf_le_lt_iff_nonempty_discrete
Set.WellFoundedOn.mono'
IsLeftCancelMul.mulLeftStrictMono_of_mulLeftMono
LeftCancelSemigroup.toIsLeftCancelMul
IsOrderedMonoid.toMulLeftMono
IsRightCancelMul.mulRightStrictMono_of_mulRightMono
RightCancelSemigroup.toIsRightCancelMul
covariant_swap_mul_of_covariant_mul
Set.WellFoundedOn.mapsTo
wellFoundedOn_setOf_le_lt_iff_nonempty_discrete πŸ“–mathematicalβ€”Set.WellFoundedOn
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Preorder.toLT
OrderMonoidIso
Multiplicative
Multiplicative.preorder
instLatticeInt
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
Multiplicative.mul
β€”Set.WellFoundedOn.mono'
Set.WellFoundedOn.mapsTo
OrderIso.le_symm_apply
OrderIso.instOrderIsoClass
LinearOrderedAddCommGroup.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete
Additive.isOrderedAddMonoid
Additive.instNontrivial
Equiv.nonempty_congr

LinearOrderedCommGroupWithZero

Theorems

NameKindAssumesProvesValidatesDepends On
discrete_iff_not_denselyOrdered πŸ“–mathematicalβ€”OrderMonoidIso
WithZero
Multiplicative
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
toLinearOrderedCommMonoidWithZero
WithZero.instPreorder
Multiplicative.preorder
instLatticeInt
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
toCommGroupWithZero
WithZero.instMulZeroClass
Multiplicative.mul
DenselyOrdered
Preorder.toLT
β€”denselyOrdered_units_iff
LinearOrderedCommGroup.discrete_iff_not_denselyOrdered
Units.isOrderedMonoid
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
Units.instMulArchimedean
Nonempty.congr
OrderMonoidIso.instMulEquivClass
GroupWithZero.toNontrivial
MulEquivClass.toMonoidWithZeroHomClass
MulEquiv.instMulEquivClass
WithZero.unzero.congr_simp
Units.val_le_val
OrderIsoClass.map_le_map_iff
OrderMonoidIso.instOrderIsoClass
WithZero.coe_le_coe
WithZero.coe_unzero
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
discrete_or_denselyOrdered πŸ“–mathematicalβ€”OrderMonoidIso
WithZero
Multiplicative
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
toLinearOrderedCommMonoidWithZero
WithZero.instPreorder
Multiplicative.preorder
instLatticeInt
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
toCommGroupWithZero
WithZero.instMulZeroClass
Multiplicative.mul
DenselyOrdered
Preorder.toLT
β€”denselyOrdered_units_iff
LinearOrderedCommGroup.discrete_or_denselyOrdered
Units.isOrderedMonoid
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
Units.instMulArchimedean
wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete_of_ne_zero πŸ“–mathematicalβ€”Set.WellFoundedOn
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
toLinearOrderedCommMonoidWithZero
Preorder.toLT
OrderMonoidIso
WithZero
Multiplicative
WithZero.instPreorder
Multiplicative.preorder
instLatticeInt
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
toCommGroupWithZero
WithZero.instMulZeroClass
Multiplicative.mul
β€”wellFoundedOn_setOf_le_lt_iff_nonempty_discrete_of_ne_zero
Set.wellFoundedOn_sdiff_singleton
instIsStrictOrderGt
Set.WellFoundedOn.mono'
inv_strictAntiβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
LinearOrderedCommMonoidWithZero.toMulPosStrictMono
Mathlib.Tactic.Contrapose.contrapose₁
Set.WellFoundedOn.mapsTo
eq_or_ne
inv_zero
inv_le_commβ‚€
inv_antiβ‚€
wellFoundedOn_setOf_le_lt_iff_nonempty_discrete_of_ne_zero πŸ“–mathematicalβ€”Set.WellFoundedOn
setOf
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
toLinearOrderedCommMonoidWithZero
Preorder.toLT
OrderMonoidIso
WithZero
Multiplicative
WithZero.instPreorder
Multiplicative.preorder
instLatticeInt
MulZeroClass.toMul
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
toCommGroupWithZero
WithZero.instMulZeroClass
Multiplicative.mul
β€”Set.wellFoundedOn_sdiff_singleton
instIsStrictOrderLt
Set.WellFoundedOn.mono'
Set.WellFoundedOn.mapsTo
GroupWithZero.toNontrivial
LinearOrderedCommGroup.wellFoundedOn_setOf_le_lt_iff_nonempty_discrete
Units.isOrderedMonoid
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
Nonempty.congr
OrderMonoidIso.instMulEquivClass
eq_or_ne
MulEquiv.symm_map_mul
map_zero
MonoidWithZeroHomClass.toZeroHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
Multiplicative.isOrderedCancelMonoid
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
Int.instIsStrictOrderedRing
WithZero.instNontrivial
OrderMonoidIso.instOrderIsoClass
WithZero.coe_le_coe
WithZero.coe_unzero

MulArchimedean

Theorems

NameKindAssumesProvesValidatesDepends On
of_locallyFiniteOrder πŸ“–mathematicalβ€”MulArchimedean
CommGroup.toCommMonoid
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”comap
Multiplicative.instMulArchimedean
instArchimedeanInt
LocallyFiniteOrder.orderMonoidHom_strictMono

OrderAddMonoidIso

Theorems

NameKindAssumesProvesValidatesDepends On
addArchimedean πŸ“–mathematicalβ€”Archimedeanβ€”map_lt_map_iff
instOrderIsoClass
map_zero
AddMonoidHomClass.toZeroHomClass
AddEquivClass.instAddMonoidHomClass
instAddEquivClass
apply_symm_apply
map_nsmul
OrderIsoClass.map_le_map_iff
Archimedean.arch

OrderMonoidIso

Theorems

NameKindAssumesProvesValidatesDepends On
mulArchimedean πŸ“–mathematicalβ€”MulArchimedeanβ€”map_lt_map_iff
instOrderIsoClass
map_one
MonoidHomClass.toOneHomClass
MulEquivClass.instMonoidHomClass
instMulEquivClass
apply_symm_apply
OrderIsoClass.map_le_map_iff
MulArchimedean.arch

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
isLeast_of_closure_iff_eq_mabs πŸ“–mathematicalβ€”IsLeast
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
setOf
Subgroup
CommGroup.toGroup
SetLike.instMembership
instSetLike
closure
Set
Set.instSingletonSet
Preorder.toLT
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
mabs
β€”cyclic_of_min
mem_closure_singleton
zpow_mul'
zpow_one
Int.mul_eq_one_iff_eq_one_or_neg_one
sup_of_le_left
LT.lt.le
zpow_neg
inv_inv
sup_of_le_right
sup_eq_left
LE.le.trans
inv_le_one'
IsOrderedMonoid.toMulLeftMono
mabs.eq_1
zpow_mul
one_mul
zpow_le_zpow_iff_right
zero_add
Mathlib.Tactic.Contrapose.contrapose₁
Left.one_le_inv_iff
one_le_zpow
closure_singleton_inv
mabs_inv
le_of_not_ge
mem_closure_singleton_iff_existsUnique_zpow πŸ“–mathematicalβ€”Subgroup
CommGroup.toGroup
SetLike.instMembership
instSetLike
closure
Set
Set.instSingletonSet
ExistsUnique
DivInvMonoid.toZPow
Group.toDivInvMonoid
β€”mem_closure_singleton
Ne.lt_or_gt
StrictAnti.injective
zpow_right_strictAnti
StrictMono.injective
zpow_right_strictMono
ExistsUnique.exists

Units

Theorems

NameKindAssumesProvesValidatesDepends On
mulArchimedean_iff πŸ“–mathematicalβ€”MulArchimedean
Units
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
LinearOrderedCommGroupWithZero.toCommGroupWithZero
CommGroup.toCommMonoid
instCommGroupUnits
CommMonoidWithZero.toCommMonoid
LinearOrderedCommMonoidWithZero.toCommMonoidWithZero
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
instPartialOrderUnits
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
β€”OrderMonoidIso.mulArchimedean
WithZero.instMulArchimedean
instMulArchimedean

WithZero

Theorems

NameKindAssumesProvesValidatesDepends On
denselyOrdered_iff πŸ“–mathematicalβ€”DenselyOrdered
WithZero
Preorder.toLT
instPreorder
β€”WithBot.denselyOrdered_iff
denselyOrdered_set_iff_subsingleton πŸ“–mathematicalβ€”DenselyOrdered
Set.Elem
WithZero
Preorder.toLT
instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Set.Subsingleton
β€”WithBot.denselyOrdered_set_iff_subsingleton
mulArchimedean_iff πŸ“–mathematicalβ€”MulArchimedean
WithZero
CommMonoidWithZero.toCommMonoid
instCommMonoidWithZero
CommGroup.toCommMonoid
instPartialOrder
β€”OrderMonoidIso.mulArchimedean
Units.instMulArchimedean
instMulArchimedean

(root)

Definitions

NameCategoryTheorems
instFintypeAddEquivInt πŸ“–CompOp
2 mathmath: Int.card_fintype_addEquiv, Int.univ_addEquiv
instLocallyFiniteOrderAdditive πŸ“–CompOpβ€”
instLocallyFiniteOrderMultiplicative πŸ“–CompOpβ€”
instLocallyFiniteOrderUnits πŸ“–CompOpβ€”
instLocallyFiniteOrderUnitsWithZero πŸ“–CompOpβ€”
instUniqueOrderAddMonoidIsoInt πŸ“–CompOpβ€”
instUniqueOrderAddMonoidIsoIntOrderDual πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
denselyOrdered_additive_iff πŸ“–mathematicalβ€”DenselyOrdered
Additive
instLTAdditive
β€”β€”
denselyOrdered_multiplicative_iff πŸ“–mathematicalβ€”DenselyOrdered
Multiplicative
instLTMultiplicative
β€”β€”
exists_pow_ltβ‚€ πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
LinearOrderedCommMonoidWithZero.toLinearOrder
LinearOrderedCommGroupWithZero.toLinearOrderedCommMonoidWithZero
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
LinearOrderedCommGroupWithZero.toCommGroupWithZero
Monoid.toNatPow
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
CommGroupWithZero.toGroupWithZero
Units.val
β€”eq_or_ne
pow_one
CanLift.prf
instCanLiftUnitsValIsUnit
exists_pow_lt
Units.isOrderedMonoid
LinearOrderedCommMonoidWithZero.toIsOrderedMonoid
Units.instMulArchimedean
instDenselyOrderedAdditive πŸ“–mathematicalβ€”DenselyOrdered
Additive
instLTAdditive
β€”denselyOrdered_additive_iff
instDenselyOrderedMultiplicative πŸ“–mathematicalβ€”DenselyOrdered
Multiplicative
instLTMultiplicative
β€”denselyOrdered_multiplicative_iff
instDenselyOrderedWithZeroOfNoMinOrder πŸ“–mathematicalβ€”DenselyOrdered
WithZero
Preorder.toLT
WithZero.instPreorder
β€”WithZero.denselyOrdered_iff
instWellFoundedGTWithZeroMultiplicativeIntLeOne πŸ“–mathematicalβ€”WellFoundedGT
WithZero
Multiplicative
Preorder.toLE
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
WithZero.one
instOneMultiplicativeOfZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Int.instCommRing
Preorder.toLT
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
LinearOrderedCommGroupWithZero.wellFoundedOn_setOf_ge_gt_iff_nonempty_discrete_of_ne_zero
WithZero.instNontrivialUnits
Multiplicative.instNontrivial
Int.instNontrivial
one_ne_zero
NeZero.one
WithZero.instNontrivial
not_denselyOrdered_withZero_int πŸ“–mathematicalβ€”DenselyOrdered
WithZero
Multiplicative
Preorder.toLT
WithZero.instPreorder
Multiplicative.preorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
β€”Multiplicative.isOrderedMonoid
Int.instIsOrderedAddMonoid
LinearOrderedCommGroupWithZero.discrete_iff_not_denselyOrdered
WithZero.instNontrivialUnits
Multiplicative.instNontrivial
Int.instNontrivial
WithZero.instMulArchimedean
Multiplicative.instMulArchimedean
instArchimedeanInt

---

← Back to Index