Documentation Verification Report

Finite

📁 Source: Mathlib/GroupTheory/Commutator/Finite.lean

Statistics

MetricCount
Definitions0
Theoremscommutator_pi_pi_of_finite, finiteIndex_center, index_center_le_pow, instFGSubtypeMemCommutator, rank_commutator_le_card, card_commutatorSet_closureCommutatorRepresentatives, card_commutator_closureCommutatorRepresentatives, closureCommutatorRepresentatives_fg, instFiniteElemProdCommutatorRepresentatives, instFiniteElemSubtypeMemSubgroupClosureCommutatorRepresentativesCommutatorSet, rank_closureCommutatorRepresentatives_le
11
Total11

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
commutator_pi_pi_of_finite 📖mathematicalBracket.bracket
Subgroup
Pi.group
commutator
pi
Set.univ
le_antisymm
commutator_pi_pi_le
pi_le_iff
map_commutator
commutator_mono
le_pi_iff
Pi.mulSingle_eq_same
Pi.mulSingle_eq_of_ne
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
instSubgroupClass
finiteIndex_center 📖mathematicalFiniteIndex
center
Group.rank_spec
Finite.card_eq_zero_of_embedding
LT.lt.ne'
Finite.card_pos
Pi.finite
Finite.of_fintype
instNonemptyElemCommutatorSet
index_center_le_pow 📖mathematicalindex
center
Monoid.toNatPow
Nat.instMonoid
Nat.card
Set.Elem
commutatorSet
Group.rank
Group.rank_spec
Fintype.card_coe
Nat.card_eq_fintype_card
Finset.coe_sort_coe
Nat.card_fun
Finite.of_fintype
Finite.card_le_of_embedding
Pi.finite
instFGSubtypeMemCommutator 📖mathematicalGroup.FG
Subgroup
SetLike.instMembership
instSetLike
commutator
toGroup
commutator_eq_closure
Group.closure_finite_fg
rank_commutator_le_card 📖mathematicalGroup.rank
Subgroup
SetLike.instMembership
instSetLike
commutator
toGroup
instFGSubtypeMemCommutator
Nat.card
Set.Elem
commutatorSet
instFGSubtypeMemCommutator
Group.closure_finite_fg
rank_congr
commutator_eq_closure
rank_closure_finite_le_nat_card

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
card_commutatorSet_closureCommutatorRepresentatives 📖mathematicalNat.card
Set.Elem
Subgroup
SetLike.instMembership
Subgroup.instSetLike
closureCommutatorRepresentatives
commutatorSet
Subgroup.toGroup
image_commutatorSet_closureCommutatorRepresentatives
Nat.card_congr
Subgroup.subtype_injective
card_commutator_closureCommutatorRepresentatives 📖mathematicalNat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
closureCommutatorRepresentatives
Subgroup.toGroup
commutator
commutator_eq_closure
image_commutatorSet_closureCommutatorRepresentatives
MonoidHom.map_closure
Nat.card_congr
Subgroup.subtype_injective
closureCommutatorRepresentatives_fg 📖mathematicalGroup.FG
Subgroup
SetLike.instMembership
Subgroup.instSetLike
closureCommutatorRepresentatives
Subgroup.toGroup
Group.closure_finite_fg
Finite.Set.finite_union
Finite.Set.finite_image
instFiniteElemProdCommutatorRepresentatives
instFiniteElemProdCommutatorRepresentatives 📖mathematicalFinite
Set.Elem
commutatorRepresentatives
Set.finite_coe_iff
Set.finite_range
instFiniteElemSubtypeMemSubgroupClosureCommutatorRepresentativesCommutatorSet 📖mathematicalFinite
Set.Elem
Subgroup
SetLike.instMembership
Subgroup.instSetLike
closureCommutatorRepresentatives
commutatorSet
Subgroup.toGroup
Nat.finite_of_card_ne_zero
card_commutatorSet_closureCommutatorRepresentatives
LT.lt.ne'
Finite.card_pos
instNonemptyElemCommutatorSet
rank_closureCommutatorRepresentatives_le 📖mathematicalGroup.rank
Subgroup
SetLike.instMembership
Subgroup.instSetLike
closureCommutatorRepresentatives
Subgroup.toGroup
closureCommutatorRepresentatives_fg
Nat.card
Set.Elem
commutatorSet
closureCommutatorRepresentatives_fg
Nat.instAtLeastTwoHAddOfNat
two_mul
LE.le.trans
Group.closure_finite_fg
Finite.Set.finite_union
Finite.Set.finite_image
instFiniteElemProdCommutatorRepresentatives
Subgroup.rank_closure_finite_le_nat_card
Set.card_union_le
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Finite.card_image_le
Finite.card_range_le

---

← Back to Index