📁 Source: Mathlib/GroupTheory/Commutator/Finite.lean
commutator_pi_pi_of_finite
finiteIndex_center
index_center_le_pow
instFGSubtypeMemCommutator
rank_commutator_le_card
card_commutatorSet_closureCommutatorRepresentatives
card_commutator_closureCommutatorRepresentatives
closureCommutatorRepresentatives_fg
instFiniteElemProdCommutatorRepresentatives
instFiniteElemSubtypeMemSubgroupClosureCommutatorRepresentativesCommutatorSet
rank_closureCommutatorRepresentatives_le
Bracket.bracket
Subgroup
Pi.group
commutator
pi
Set.univ
le_antisymm
commutator_pi_pi_le
pi_le_iff
map_commutator
commutator_mono
le_pi_iff
Pi.mulSingle_eq_same
Pi.mulSingle_eq_of_ne
SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
instSubgroupClass
FiniteIndex
center
Group.rank_spec
Finite.card_eq_zero_of_embedding
LT.lt.ne'
Finite.card_pos
Pi.finite
Finite.of_fintype
instNonemptyElemCommutatorSet
index
Monoid.toNatPow
Nat.instMonoid
Nat.card
Set.Elem
commutatorSet
Group.rank
Fintype.card_coe
Nat.card_eq_fintype_card
Finset.coe_sort_coe
Nat.card_fun
Finite.card_le_of_embedding
Group.FG
SetLike.instMembership
instSetLike
toGroup
commutator_eq_closure
Group.closure_finite_fg
rank_congr
rank_closure_finite_le_nat_card
Subgroup.instSetLike
closureCommutatorRepresentatives
Subgroup.toGroup
image_commutatorSet_closureCommutatorRepresentatives
Nat.card_congr
Subgroup.subtype_injective
MonoidHom.map_closure
Finite.Set.finite_union
Finite.Set.finite_image
Finite
commutatorRepresentatives
Set.finite_coe_iff
Set.finite_range
Nat.finite_of_card_ne_zero
Nat.instAtLeastTwoHAddOfNat
two_mul
LE.le.trans
Subgroup.rank_closure_finite_le_nat_card
Set.card_union_le
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Finite.card_image_le
Finite.card_range_le
---
← Back to Index