Documentation Verification Report

Complement

πŸ“ Source: Mathlib/GroupTheory/Complement.lean

Statistics

MetricCount
DefinitionsIsComplement, IsComplement', leftQuotientEquiv, rightQuotientEquiv, toLeftFun, toRightFun, LeftTransversal, RightTransversal, instAddActionLeftTransversal, instInhabitedLeftTransversal, instInhabitedRightTransversal, IsComplement, IsComplement', QuotientMulEquiv, equiv, leftQuotientEquiv, rightQuotientEquiv, toLeftFun, toRightFun, LeftTransversal, RightTransversal, instInhabitedLeftTransversal, instInhabitedRightTransversal, instMulActionLeftTransversal
24
Theoremsadd_eq, add_neg_toRightFun_mem, card_left, card_mul_card, card_right, encard_left, encard_right, existsUnique, finite_left, finite_left_iff, finite_right, finite_right_iff, leftQuotientEquiv_apply, mk''_rightQuotientEquiv, ncard_left, ncard_right, neg_add_toLeftFun_mem, neg_toLeftFun_add_mem, nonempty_left, nonempty_right, pairwiseDisjoint_vadd, quotientAddGroupMk_leftQuotientEquiv, rightQuotientEquiv_apply, toRightFun_add_neg_mem, exists_isComplement_left, exists_isComplement_right, exists_left_transversal_of_le, exists_right_transversal_of_le, isComplement'_bot_left, isComplement'_bot_right, isComplement'_bot_top, isComplement'_comm, isComplement'_def, isComplement'_top_bot, isComplement'_top_left, isComplement'_top_right, isComplement_addSubgroup_left_iff_bijective, isComplement_addSubgroup_left_iff_existsUnique_quotientMk'', isComplement_addSubgroup_right_iff_bijective, isComplement_addSubgroup_right_iff_existsUnique_quotientAddGroupMk, isComplement_iff_bijective, isComplement_iff_existsUnique, isComplement_iff_existsUnique_add_neg_mem, isComplement_iff_existsUnique_neg_add_mem, isComplement_range_left, isComplement_range_right, isComplement_singleton_left, isComplement_singleton_right, isComplement_singleton_univ, isComplement_univ_left, isComplement_univ_right, isComplement_univ_singleton, not_isComplement_empty_left, not_isComplement_empty_right, vadd_apply_eq_vadd_apply_neg_vadd, vadd_leftQuotientEquiv, vadd_toLeftFun, QuotientMulEquiv_apply, QuotientMulEquiv_symm_apply, card_mul, disjoint, index_eq_card, isCompl, sup_eq_top, card_left, card_mul, card_mul_card, card_right, coe_equiv_fst_eq_one_iff_mem, coe_equiv_snd_eq_one_iff_mem, encard_left, encard_right, equiv_fst_eq_iff_leftCosetEquivalence, equiv_fst_eq_mul_inv, equiv_fst_eq_one_of_mem_of_one_mem, equiv_fst_eq_self_iff_mem, equiv_fst_eq_self_of_mem_of_one_mem, equiv_fst_mul_equiv_snd, equiv_mul_left, equiv_mul_left_of_mem, equiv_mul_right, equiv_mul_right_of_mem, equiv_one, equiv_snd_eq_iff_rightCosetEquivalence, equiv_snd_eq_inv_mul, equiv_snd_eq_one_of_mem_of_one_mem, equiv_snd_eq_self_iff_mem, equiv_snd_eq_self_of_mem_of_one_mem, equiv_symm_apply, existsUnique, finite_left, finite_left_iff, finite_right, finite_right_iff, inv_mul_toLeftFun_mem, inv_toLeftFun_mul_mem, leftCosetEquivalence_equiv_fst, leftQuotientEquiv_apply, mk''_rightQuotientEquiv, mul_eq, mul_inv_toRightFun_mem, ncard_left, ncard_right, nonempty_left, nonempty_right, pairwiseDisjoint_smul, quotientGroupMk_leftQuotientEquiv, rightCosetEquivalence_equiv_snd, rightQuotientEquiv_apply, toRightFun_mul_inv_mem, exists_isComplement_left, exists_isComplement_right, exists_left_transversal_of_le, exists_right_transversal_of_le, isComplement'_bot_left, isComplement'_bot_right, isComplement'_bot_top, isComplement'_comm, isComplement'_def, isComplement'_iff_card_mul_and_disjoint, isComplement'_of_card_mul_and_disjoint, isComplement'_of_coprime, isComplement'_of_disjoint_and_mul_eq_univ, isComplement'_stabilizer, isComplement'_top_bot, isComplement'_top_left, isComplement'_top_right, isComplement_iff_bijective, isComplement_iff_existsUnique, isComplement_iff_existsUnique_inv_mul_mem, isComplement_iff_existsUnique_mul_inv_mem, isComplement_range_left, isComplement_range_right, isComplement_singleton_left, isComplement_singleton_right, isComplement_singleton_univ, isComplement_subgroup_left_iff_bijective, isComplement_subgroup_left_iff_existsUnique_quotientMk'', isComplement_subgroup_right_iff_bijective, isComplement_subgroup_right_iff_existsUnique_quotientGroupMk, isComplement_univ_left, isComplement_univ_right, isComplement_univ_singleton, not_isComplement_empty_left, not_isComplement_empty_right, smul_apply_eq_smul_apply_inv_smul, smul_leftQuotientEquiv, smul_toLeftFun
148
Total172

AddSubgroup

Definitions

NameCategoryTheorems
IsComplement πŸ“–MathDef
25 mathmath: exists_isComplement_left, isComplement_iff_bijective, isComplement_addSubgroup_left_iff_bijective, isComplement_iff_existsUnique_neg_add_mem, isComplement_univ_right, isComplement_range_left, isComplement_addSubgroup_right_iff_bijective, isComplement_addSubgroup_right_iff_existsUnique_quotientAddGroupMk, vadd_leftQuotientEquiv, not_isComplement_empty_right, isComplement_addSubgroup_left_iff_existsUnique_quotientMk'', isComplement_singleton_univ, isComplement_iff_existsUnique, isComplement_univ_left, exists_isComplement_right, vadd_toLeftFun, vadd_apply_eq_vadd_apply_neg_vadd, isComplement_singleton_left, exists_leftTransversal_of_FiniteIndex, isComplement'_def, isComplement_singleton_right, not_isComplement_empty_left, isComplement_iff_existsUnique_add_neg_mem, isComplement_univ_singleton, isComplement_range_right
IsComplement' πŸ“–MathDef
8 mathmath: isComplement'_top_bot, isComplement'_top_left, isComplement'_top_right, isComplement'_comm, isComplement'_bot_left, isComplement'_def, isComplement'_bot_top, isComplement'_bot_right
LeftTransversal πŸ“–CompOp
5 mathmath: vadd_leftQuotientEquiv, leftTransversals.vadd_diff_vadd, vadd_toLeftFun, vadd_apply_eq_vadd_apply_neg_vadd, AddMonoidHom.transfer_def
RightTransversal πŸ“–CompOpβ€”
instAddActionLeftTransversal πŸ“–CompOp
5 mathmath: vadd_leftQuotientEquiv, leftTransversals.vadd_diff_vadd, vadd_toLeftFun, vadd_apply_eq_vadd_apply_neg_vadd, AddMonoidHom.transfer_def
instInhabitedLeftTransversal πŸ“–CompOpβ€”
instInhabitedRightTransversal πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isComplement_left πŸ“–mathematicalβ€”IsComplement
SetLike.coe
AddSubgroup
instSetLike
Set
Set.instMembership
β€”isComplement_range_left
Function.update_self
Quotient.out_eq'
exists_isComplement_right πŸ“–mathematicalβ€”IsComplement
SetLike.coe
AddSubgroup
instSetLike
Set
Set.instMembership
β€”isComplement_range_right
Function.update_self
Quotient.out_eq'
exists_left_transversal_of_le πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.coe
instSetLike
Nat.card
Set.Elem
SetLike.instMembership
β€”addSubgroupOf_map_subtype
inf_of_le_left
exists_isComplement_left
Set.image_add
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass
IsComplement.add_eq
Set.image_congr
Set.image_univ
Subtype.range_coe_subtype
IsComplement.card_mul_card
Nat.card_congr
subtype_injective
exists_right_transversal_of_le πŸ“–mathematicalAddSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
SetLike.coe
instSetLike
Nat.card
SetLike.instMembership
Set.Elem
β€”addSubgroupOf_map_subtype
inf_of_le_left
exists_isComplement_right
Set.image_add
AddMonoidHomClass.toAddHomClass
AddMonoidHom.instAddMonoidHomClass
IsComplement.add_eq
Set.image_congr
Set.image_univ
Subtype.range_coe_subtype
IsComplement.card_mul_card
Nat.card_congr
subtype_injective
isComplement'_bot_left πŸ“–mathematicalβ€”IsComplement'
Bot.bot
AddSubgroup
instBot
Top.top
instTop
β€”isComplement_singleton_left
coe_eq_univ
isComplement'_bot_right πŸ“–mathematicalβ€”IsComplement'
Bot.bot
AddSubgroup
instBot
Top.top
instTop
β€”isComplement_singleton_right
coe_eq_univ
isComplement'_bot_top πŸ“–mathematicalβ€”IsComplement'
Bot.bot
AddSubgroup
instBot
Top.top
instTop
β€”isComplement_singleton_univ
isComplement'_comm πŸ“–mathematicalβ€”IsComplement'β€”IsComplement'.symm
isComplement'_def πŸ“–mathematicalβ€”IsComplement'
IsComplement
SetLike.coe
AddSubgroup
instSetLike
β€”β€”
isComplement'_top_bot πŸ“–mathematicalβ€”IsComplement'
Top.top
AddSubgroup
instTop
Bot.bot
instBot
β€”isComplement_univ_singleton
isComplement'_top_left πŸ“–mathematicalβ€”IsComplement'
Top.top
AddSubgroup
instTop
Bot.bot
instBot
β€”isComplement_univ_left
coe_eq_singleton
isComplement'_top_right πŸ“–mathematicalβ€”IsComplement'
Top.top
AddSubgroup
instTop
Bot.bot
instBot
β€”isComplement_univ_right
coe_eq_singleton
isComplement_addSubgroup_left_iff_bijective πŸ“–mathematicalβ€”IsComplement
SetLike.coe
AddSubgroup
instSetLike
Function.Bijective
Set.Elem
QuotientAddGroup.rightRel
Set.restrict
Quotient.mk''
β€”isComplement_addSubgroup_left_iff_existsUnique_quotientMk''
Function.bijective_iff_existsUnique
isComplement_addSubgroup_left_iff_existsUnique_quotientMk'' πŸ“–mathematicalβ€”IsComplement
SetLike.coe
AddSubgroup
instSetLike
ExistsUnique
Set.Elem
QuotientAddGroup.rightRel
Quotient.mk''
Set
Set.instMembership
β€”isComplement_iff_existsUnique_add_neg_mem
SetLike.mem_coe
QuotientAddGroup.rightRel_apply
Quotient.eq''
Quotient.forall
isComplement_addSubgroup_right_iff_bijective πŸ“–mathematicalβ€”IsComplement
SetLike.coe
AddSubgroup
instSetLike
Function.Bijective
Set.Elem
HasQuotient.Quotient
QuotientAddGroup.instHasQuotientAddSubgroup
Set.restrict
β€”isComplement_addSubgroup_right_iff_existsUnique_quotientAddGroupMk
Function.bijective_iff_existsUnique
isComplement_addSubgroup_right_iff_existsUnique_quotientAddGroupMk πŸ“–mathematicalβ€”IsComplement
SetLike.coe
AddSubgroup
instSetLike
ExistsUnique
Set.Elem
HasQuotient.Quotient
QuotientAddGroup.instHasQuotientAddSubgroup
Set
Set.instMembership
β€”isComplement_iff_existsUnique_neg_add_mem
SetLike.mem_coe
QuotientAddGroup.eq
isComplement_iff_bijective πŸ“–mathematicalβ€”IsComplement
SetLike.coe
Function.Bijective
SetLike.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”β€”
isComplement_iff_existsUnique πŸ“–mathematicalβ€”IsComplement
ExistsUnique
Set.Elem
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Set
Set.instMembership
β€”Function.bijective_iff_existsUnique
isComplement_iff_existsUnique_add_neg_mem πŸ“–mathematicalβ€”IsComplement
ExistsUnique
Set.Elem
Set
Set.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”neg_add_cancel_right
add_neg_cancel_right
Subtype.coe_prop
isComplement_iff_existsUnique
isComplement_iff_existsUnique_neg_add_mem πŸ“–mathematicalβ€”IsComplement
ExistsUnique
Set.Elem
Set
Set.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”add_neg_cancel_left
neg_add_cancel_left
Subtype.coe_prop
isComplement_iff_existsUnique
isComplement_range_left πŸ“–mathematicalβ€”IsComplement
Set.range
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
SetLike.coe
instSetLike
β€”isComplement_addSubgroup_right_iff_bijective
isComplement_range_right πŸ“–mathematicalQuotient.mk''
QuotientAddGroup.rightRel
IsComplement
SetLike.coe
AddSubgroup
instSetLike
Set.range
β€”isComplement_addSubgroup_left_iff_bijective
isComplement_singleton_left πŸ“–mathematicalβ€”IsComplement
Set
Set.instSingletonSet
Set.univ
β€”top_le_iff
add_left_cancel
AddLeftCancelSemigroup.toIsLeftCancelAdd
isComplement_singleton_univ
isComplement_singleton_right πŸ“–mathematicalβ€”IsComplement
Set
Set.instSingletonSet
Set.univ
β€”top_le_iff
add_right_cancel
AddRightCancelSemigroup.toIsRightCancelAdd
isComplement_univ_singleton
isComplement_singleton_univ πŸ“–mathematicalβ€”IsComplement
Set
Set.instSingletonSet
Set.univ
β€”add_left_cancel
AddLeftCancelSemigroup.toIsLeftCancelAdd
add_neg_cancel_left
isComplement_univ_left πŸ“–mathematicalβ€”IsComplement
Set.univ
Set
Set.instSingletonSet
β€”Set.exists_eq_singleton_iff_nonempty_subsingleton
mem_top
neg_add_cancel
isComplement_univ_singleton
isComplement_univ_right πŸ“–mathematicalβ€”IsComplement
Set.univ
Set
Set.instSingletonSet
β€”Set.exists_eq_singleton_iff_nonempty_subsingleton
mem_top
add_neg_cancel
isComplement_singleton_univ
isComplement_univ_singleton πŸ“–mathematicalβ€”IsComplement
Set.univ
Set
Set.instSingletonSet
β€”add_right_cancel
AddRightCancelSemigroup.toIsRightCancelAdd
neg_add_cancel_right
not_isComplement_empty_left πŸ“–mathematicalβ€”IsComplement
Set
Set.instEmptyCollection
β€”Set.empty_add
Set.univ_eq_empty_iff
not_isEmpty_of_nonempty
Zero.instNonempty
IsComplement.add_eq
not_isComplement_empty_right πŸ“–mathematicalβ€”IsComplement
Set
Set.instEmptyCollection
β€”Set.add_empty
Set.univ_eq_empty_iff
not_isEmpty_of_nonempty
Zero.instNonempty
IsComplement.add_eq
vadd_apply_eq_vadd_apply_neg_vadd πŸ“–mathematicalβ€”Set
Set.instMembership
IsComplement
SetLike.coe
AddSubgroup
instSetLike
HVAdd.hVAdd
LeftTransversal
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
instAddActionLeftTransversal
DFunLike.coe
Equiv
HasQuotient.Quotient
QuotientAddGroup.instHasQuotientAddSubgroup
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
IsComplement.leftQuotientEquiv
AddAction.quotient
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”vadd_leftQuotientEquiv
vadd_neg_vadd
vadd_leftQuotientEquiv πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set
Set.instMembership
IsComplement
SetLike.coe
AddSubgroup
instSetLike
DFunLike.coe
Equiv
HasQuotient.Quotient
QuotientAddGroup.instHasQuotientAddSubgroup
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
IsComplement.leftQuotientEquiv
LeftTransversal
instAddActionLeftTransversal
AddAction.quotient
β€”Quotient.inductionOn'
vadd_toLeftFun
vadd_toLeftFun πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
Set
Set.instMembership
IsComplement
SetLike.coe
AddSubgroup
instSetLike
IsComplement.toLeftFun
LeftTransversal
instAddActionLeftTransversal
β€”Set.vadd_mem_vadd_set
Subtype.coe_prop
ExistsUnique.unique
isComplement_iff_existsUnique_neg_add_mem
AddAction.QuotientAction.inv_mul_mem
IsComplement.neg_toLeftFun_add_mem

AddSubgroup.IsComplement

Definitions

NameCategoryTheorems
leftQuotientEquiv πŸ“–CompOp
4 mathmath: quotientAddGroupMk_leftQuotientEquiv, AddSubgroup.vadd_leftQuotientEquiv, AddSubgroup.vadd_apply_eq_vadd_apply_neg_vadd, leftQuotientEquiv_apply
rightQuotientEquiv πŸ“–CompOp
2 mathmath: mk''_rightQuotientEquiv, rightQuotientEquiv_apply
toLeftFun πŸ“–CompOp
3 mathmath: neg_toLeftFun_add_mem, neg_add_toLeftFun_mem, AddSubgroup.vadd_toLeftFun
toRightFun πŸ“–CompOp
2 mathmath: toRightFun_add_neg_mem, add_neg_toRightFun_mem

Theorems

NameKindAssumesProvesValidatesDepends On
add_eq πŸ“–mathematicalAddSubgroup.IsComplementSet
Set.add
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Set.univ
β€”Set.eq_univ_of_forall
Set.mem_add
ExistsUnique.exists
existsUnique
add_neg_toRightFun_mem πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
SetLike.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Set
Set.instMembership
toRightFun
β€”QuotientAddGroup.rightRel_apply
Quotient.exact'
mk''_rightQuotientEquiv
card_left πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Nat.card
Set.Elem
AddSubgroup.index
β€”Nat.card_congr
AddSubgroup.isComplement_addSubgroup_right_iff_bijective
card_mul_card πŸ“–mathematicalAddSubgroup.IsComplementNat.card
Set.Elem
β€”Nat.card_prod
Nat.card_congr
card_right πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Nat.card
Set.Elem
AddSubgroup.index
β€”Nat.card_congr
AddSubgroup.isComplement_addSubgroup_left_iff_bijective
encard_left πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Set.encard
ENat
ENat.instNatCast
AddSubgroup.index
β€”Set.Finite.cast_ncard_eq
finite_left
ncard_left
encard_right πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Set.encard
ENat
ENat.instNatCast
AddSubgroup.index
β€”Set.Finite.cast_ncard_eq
finite_right
ncard_right
existsUnique πŸ“–mathematicalAddSubgroup.IsComplementExistsUnique
Set.Elem
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Set
Set.instMembership
β€”AddSubgroup.isComplement_iff_existsUnique
finite_left πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Set.Finiteβ€”finite_left_iff
finite_left_iff πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Finite
Set.Elem
AddSubgroup.FiniteIndex
β€”Equiv.finite_iff
AddSubgroup.finiteIndex_of_finite_quotient
AddSubgroup.finite_quotient_of_finiteIndex
finite_right πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Set.Finiteβ€”finite_right_iff
finite_right_iff πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Finite
Set.Elem
AddSubgroup.FiniteIndex
β€”Equiv.finite_iff
AddSubgroup.finiteIndex_of_finite_quotient
AddSubgroup.finite_quotient_of_finiteIndex
leftQuotientEquiv_apply πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
HasQuotient.Quotient
AddSubgroup
QuotientAddGroup.instHasQuotientAddSubgroup
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
leftQuotientEquiv
AddSubgroup.isComplement_range_left
β€”AddSubgroup.isComplement_range_left
Equiv.apply_eq_iff_eq_symm_apply
mk''_rightQuotientEquiv πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Quotient.mk''
QuotientAddGroup.rightRel
Set
Set.instMembership
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
rightQuotientEquiv
β€”Equiv.symm_apply_apply
ncard_left πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Set.ncard
AddSubgroup.index
β€”Nat.card_coe_set_eq
card_left
ncard_right πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Set.ncard
AddSubgroup.index
β€”Nat.card_coe_set_eq
card_right
neg_add_toLeftFun_mem πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
SetLike.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Set
Set.instMembership
toLeftFun
β€”neg_add_rev
neg_neg
AddSubgroup.neg_mem
neg_toLeftFun_add_mem
neg_toLeftFun_add_mem πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
SetLike.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
Set
Set.instMembership
toLeftFun
β€”QuotientAddGroup.leftRel_apply
Quotient.exact'
quotientAddGroupMk_leftQuotientEquiv
nonempty_left πŸ“–mathematicalAddSubgroup.IsComplementSet.Nonemptyβ€”Mathlib.Tactic.Contrapose.contrapose₁
Set.not_nonempty_iff_eq_empty
AddSubgroup.not_isComplement_empty_left
nonempty_right πŸ“–mathematicalAddSubgroup.IsComplementSet.Nonemptyβ€”Mathlib.Tactic.Contrapose.contrapose₁
Set.not_nonempty_iff_eq_empty
AddSubgroup.not_isComplement_empty_right
pairwiseDisjoint_vadd πŸ“–mathematicalAddSubgroup.IsComplementSet.PairwiseDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
HVAdd.hVAdd
instHVAdd
Set.vaddSet
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddAction.toAddSemigroupAction
AddMonoid.toAddAction
β€”Set.disjoint_iff_forall_ne
quotientAddGroupMk_leftQuotientEquiv πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
Quotient.mk''
QuotientAddGroup.leftRel
Set
Set.instMembership
DFunLike.coe
Equiv
HasQuotient.Quotient
QuotientAddGroup.instHasQuotientAddSubgroup
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
leftQuotientEquiv
β€”Equiv.symm_apply_apply
rightQuotientEquiv_apply πŸ“–mathematicalQuotient.mk''
QuotientAddGroup.rightRel
Set
Set.instMembership
Set.range
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
rightQuotientEquiv
AddSubgroup.isComplement_range_right
β€”AddSubgroup.isComplement_range_right
Equiv.apply_eq_iff_eq_symm_apply
toRightFun_add_neg_mem πŸ“–mathematicalAddSubgroup.IsComplement
SetLike.coe
AddSubgroup
AddSubgroup.instSetLike
SetLike.instMembership
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
Set
Set.instMembership
toRightFun
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
β€”neg_add_rev
neg_neg
AddSubgroup.neg_mem
add_neg_toRightFun_mem

Subgroup

Definitions

NameCategoryTheorems
IsComplement πŸ“–MathDef
30 mathmath: isComplement_singleton_univ, isComplement_singleton_right, transferTransversal_apply, not_isComplement_empty_right, Monoid.PushoutI.NormalWord.Transversal.compl, isComplement_range_right, smul_leftQuotientEquiv, isComplement_iff_bijective, isComplement_subgroup_left_iff_existsUnique_quotientMk'', smul_apply_eq_smul_apply_inv_smul, isComplement_iff_existsUnique, exists_leftTransversal_of_FiniteIndex, exists_isComplement_left, isComplement_singleton_left, transferTransversal_apply', isComplement_range_left, isComplement_subgroup_left_iff_bijective, isComplement_iff_existsUnique_inv_mul_mem, not_isComplement_empty_left, isComplement_iff_existsUnique_mul_inv_mem, HNNExtension.NormalWord.TransversalPair.compl, transferTransversal_apply'', isComplement_subgroup_right_iff_existsUnique_quotientGroupMk, smul_toLeftFun, isComplement_univ_singleton, exists_isComplement_right, isComplement_univ_right, isComplement_subgroup_right_iff_bijective, isComplement'_def, isComplement_univ_left
IsComplement' πŸ“–MathDef
18 mathmath: isComplement'_top_left, IsCyclic.isComplement', MonoidHom.ker_transferSylow_isComplement', isComplement'_of_disjoint_and_mul_eq_univ, isComplement'_bot_right, isComplement'_stabilizer, isComplement'_top_right, isComplement'_comm, exists_right_complement'_of_coprime, exists_left_complement'_of_coprime, isComplement'_bot_left, isComplement'_stabilizer_of_coprime, isComplement'_of_card_mul_and_disjoint, isComplement'_top_bot, isComplement'_of_coprime, isComplement'_iff_card_mul_and_disjoint, isComplement'_bot_top, isComplement'_def
LeftTransversal πŸ“–CompOp
8 mathmath: smul_leftQuotientEquiv, smul_diff_smul', MonoidHom.transfer_def, leftTransversals.smul_diff_smul, smul_apply_eq_smul_apply_inv_smul, transferTransversal_apply'', smul_toLeftFun, smul_diff'
RightTransversal πŸ“–CompOpβ€”
instInhabitedLeftTransversal πŸ“–CompOpβ€”
instInhabitedRightTransversal πŸ“–CompOpβ€”
instMulActionLeftTransversal πŸ“–CompOp
8 mathmath: smul_leftQuotientEquiv, smul_diff_smul', MonoidHom.transfer_def, leftTransversals.smul_diff_smul, smul_apply_eq_smul_apply_inv_smul, transferTransversal_apply'', smul_toLeftFun, smul_diff'

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isComplement_left πŸ“–mathematicalβ€”IsComplement
SetLike.coe
Subgroup
instSetLike
Set
Set.instMembership
β€”isComplement_range_left
Function.update_self
Quotient.out_eq'
exists_isComplement_right πŸ“–mathematicalβ€”IsComplement
SetLike.coe
Subgroup
instSetLike
Set
Set.instMembership
β€”isComplement_range_right
Function.update_self
Quotient.out_eq'
exists_left_transversal_of_le πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
instSetLike
Nat.card
Set.Elem
SetLike.instMembership
β€”subgroupOf_map_subtype
inf_of_le_left
exists_isComplement_left
Set.image_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
IsComplement.mul_eq
Set.image_congr
Set.image_univ
Subtype.range_coe_subtype
IsComplement.card_mul_card
Nat.card_congr
subtype_injective
exists_right_transversal_of_le πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
instSetLike
Nat.card
SetLike.instMembership
Set.Elem
β€”subgroupOf_map_subtype
inf_of_le_left
exists_isComplement_right
Set.image_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
IsComplement.mul_eq
Set.image_congr
Set.image_univ
Subtype.range_coe_subtype
IsComplement.card_mul_card
Nat.card_congr
subtype_injective
isComplement'_bot_left πŸ“–mathematicalβ€”IsComplement'
Bot.bot
Subgroup
instBot
Top.top
instTop
β€”isComplement_singleton_left
coe_eq_univ
isComplement'_bot_right πŸ“–mathematicalβ€”IsComplement'
Bot.bot
Subgroup
instBot
Top.top
instTop
β€”isComplement_singleton_right
coe_eq_univ
isComplement'_bot_top πŸ“–mathematicalβ€”IsComplement'
Bot.bot
Subgroup
instBot
Top.top
instTop
β€”isComplement_singleton_univ
isComplement'_comm πŸ“–mathematicalβ€”IsComplement'β€”IsComplement'.symm
isComplement'_def πŸ“–mathematicalβ€”IsComplement'
IsComplement
SetLike.coe
Subgroup
instSetLike
β€”β€”
isComplement'_iff_card_mul_and_disjoint πŸ“–mathematicalβ€”IsComplement'
Nat.card
Subgroup
SetLike.instMembership
instSetLike
Disjoint
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
β€”IsComplement'.card_mul
IsComplement'.disjoint
isComplement'_of_card_mul_and_disjoint
isComplement'_of_card_mul_and_disjoint πŸ“–mathematicalNat.card
Subgroup
SetLike.instMembership
instSetLike
Disjoint
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
IsComplement'β€”Nat.bijective_iff_injective_and_card
mul_injective_of_disjoint
Nat.card_prod
isComplement'_of_coprime πŸ“–mathematicalNat.card
Subgroup
SetLike.instMembership
instSetLike
IsComplement'β€”isComplement'_of_card_mul_and_disjoint
disjoint_iff
inf_eq_bot_of_coprime
isComplement'_of_disjoint_and_mul_eq_univ πŸ“–mathematicalDisjoint
Subgroup
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
instCompleteLattice
Set
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
instSetLike
Set.univ
IsComplement'β€”mul_injective_of_disjoint
Set.eq_univ_iff_forall
isComplement'_stabilizer πŸ“–mathematicalSubgroup
SetLike.instMembership
instSetLike
one
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
MulAction.toSemigroupAction
instMulAction
IsComplement'
MulAction.stabilizer
β€”isComplement_iff_existsUnique
SemigroupAction.mul_smul
SubgroupClass.toInvMemClass
instSubgroupClass
inv_mul_cancel_left
eq_inv_of_mul_eq_one_right
SubmonoidClass.toMulMemClass
SubgroupClass.toSubmonoidClass
smul_def
mul_assoc
right_eq_mul
RightCancelSemigroup.toIsRightCancelMul
coe_mul
coe_one
isComplement'_top_bot πŸ“–mathematicalβ€”IsComplement'
Top.top
Subgroup
instTop
Bot.bot
instBot
β€”isComplement_univ_singleton
isComplement'_top_left πŸ“–mathematicalβ€”IsComplement'
Top.top
Subgroup
instTop
Bot.bot
instBot
β€”isComplement_univ_left
coe_eq_singleton
isComplement'_top_right πŸ“–mathematicalβ€”IsComplement'
Top.top
Subgroup
instTop
Bot.bot
instBot
β€”isComplement_univ_right
coe_eq_singleton
isComplement_iff_bijective πŸ“–mathematicalβ€”IsComplement
SetLike.coe
Function.Bijective
SetLike.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”β€”
isComplement_iff_existsUnique πŸ“–mathematicalβ€”IsComplement
ExistsUnique
Set.Elem
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set
Set.instMembership
β€”Function.bijective_iff_existsUnique
isComplement_iff_existsUnique_inv_mul_mem πŸ“–mathematicalβ€”IsComplement
ExistsUnique
Set.Elem
Set
Set.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”mul_inv_cancel_left
inv_mul_cancel_left
isComplement_iff_existsUnique
isComplement_iff_existsUnique_mul_inv_mem πŸ“–mathematicalβ€”IsComplement
ExistsUnique
Set.Elem
Set
Set.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”inv_mul_cancel_right
mul_inv_cancel_right
isComplement_iff_existsUnique
isComplement_range_left πŸ“–mathematicalβ€”IsComplement
Set.range
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
SetLike.coe
instSetLike
β€”isComplement_subgroup_right_iff_bijective
isComplement_range_right πŸ“–mathematicalQuotient.mk''
QuotientGroup.rightRel
IsComplement
SetLike.coe
Subgroup
instSetLike
Set.range
β€”isComplement_subgroup_left_iff_bijective
isComplement_singleton_left πŸ“–mathematicalβ€”IsComplement
Set
Set.instSingletonSet
Set.univ
β€”top_le_iff
mul_left_cancel
LeftCancelSemigroup.toIsLeftCancelMul
isComplement_singleton_univ
isComplement_singleton_right πŸ“–mathematicalβ€”IsComplement
Set
Set.instSingletonSet
Set.univ
β€”top_le_iff
mul_right_cancel
RightCancelSemigroup.toIsRightCancelMul
isComplement_univ_singleton
isComplement_singleton_univ πŸ“–mathematicalβ€”IsComplement
Set
Set.instSingletonSet
Set.univ
β€”mul_left_cancel
LeftCancelSemigroup.toIsLeftCancelMul
mul_inv_cancel_left
isComplement_subgroup_left_iff_bijective πŸ“–mathematicalβ€”IsComplement
SetLike.coe
Subgroup
instSetLike
Function.Bijective
Set.Elem
QuotientGroup.rightRel
Set.restrict
Quotient.mk''
β€”isComplement_subgroup_left_iff_existsUnique_quotientMk''
Function.bijective_iff_existsUnique
isComplement_subgroup_left_iff_existsUnique_quotientMk'' πŸ“–mathematicalβ€”IsComplement
SetLike.coe
Subgroup
instSetLike
ExistsUnique
Set.Elem
QuotientGroup.rightRel
Quotient.mk''
Set
Set.instMembership
β€”β€”
isComplement_subgroup_right_iff_bijective πŸ“–mathematicalβ€”IsComplement
SetLike.coe
Subgroup
instSetLike
Function.Bijective
Set.Elem
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
Set.restrict
β€”isComplement_subgroup_right_iff_existsUnique_quotientGroupMk
Function.bijective_iff_existsUnique
isComplement_subgroup_right_iff_existsUnique_quotientGroupMk πŸ“–mathematicalβ€”IsComplement
SetLike.coe
Subgroup
instSetLike
ExistsUnique
Set.Elem
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
Set
Set.instMembership
β€”β€”
isComplement_univ_left πŸ“–mathematicalβ€”IsComplement
Set.univ
Set
Set.instSingletonSet
β€”Set.exists_eq_singleton_iff_nonempty_subsingleton
mem_top
inv_mul_cancel
isComplement_univ_singleton
isComplement_univ_right πŸ“–mathematicalβ€”IsComplement
Set.univ
Set
Set.instSingletonSet
β€”Set.exists_eq_singleton_iff_nonempty_subsingleton
mem_top
mul_inv_cancel
isComplement_singleton_univ
isComplement_univ_singleton πŸ“–mathematicalβ€”IsComplement
Set.univ
Set
Set.instSingletonSet
β€”mul_right_cancel
RightCancelSemigroup.toIsRightCancelMul
inv_mul_cancel_right
not_isComplement_empty_left πŸ“–mathematicalβ€”IsComplement
Set
Set.instEmptyCollection
β€”Set.empty_mul
One.instNonempty
IsComplement.mul_eq
not_isComplement_empty_right πŸ“–mathematicalβ€”IsComplement
Set
Set.instEmptyCollection
β€”Set.mul_empty
One.instNonempty
IsComplement.mul_eq
smul_apply_eq_smul_apply_inv_smul πŸ“–mathematicalβ€”Set
Set.instMembership
IsComplement
SetLike.coe
Subgroup
instSetLike
LeftTransversal
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
instMulActionLeftTransversal
DFunLike.coe
Equiv
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
IsComplement.leftQuotientEquiv
MulAction.quotient
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”smul_leftQuotientEquiv
smul_inv_smul
smul_leftQuotientEquiv πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set
Set.instMembership
IsComplement
SetLike.coe
Subgroup
instSetLike
DFunLike.coe
Equiv
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
IsComplement.leftQuotientEquiv
LeftTransversal
instMulActionLeftTransversal
MulAction.quotient
β€”Quotient.inductionOn'
smul_toLeftFun
smul_toLeftFun πŸ“–mathematicalβ€”SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Set
Set.instMembership
IsComplement
SetLike.coe
Subgroup
instSetLike
IsComplement.toLeftFun
LeftTransversal
instMulActionLeftTransversal
β€”Set.smul_mem_smul_set
Subtype.coe_prop
ExistsUnique.unique
isComplement_iff_existsUnique_inv_mul_mem
MulAction.QuotientAction.inv_mul_mem
IsComplement.inv_toLeftFun_mul_mem

Subgroup.IsComplement

Definitions

NameCategoryTheorems
equiv πŸ“–CompOp
24 mathmath: equiv_fst_eq_iff_leftCosetEquivalence, coe_equiv_snd_eq_one_iff_mem, equiv_snd_eq_self_iff_mem, equiv_one, equiv_mul_left_of_mem, equiv_snd_eq_iff_rightCosetEquivalence, leftCosetEquivalence_equiv_fst, Monoid.PushoutI.NormalWord.cons_head, equiv_fst_eq_self_of_mem_of_one_mem, equiv_fst_eq_one_of_mem_of_one_mem, HNNExtension.NormalWord.unitsSMulGroup_snd, equiv_snd_eq_self_of_mem_of_one_mem, equiv_snd_eq_one_of_mem_of_one_mem, equiv_fst_mul_equiv_snd, equiv_symm_apply, rightCosetEquivalence_equiv_snd, coe_equiv_fst_eq_one_iff_mem, equiv_mul_right_of_mem, equiv_mul_right, equiv_fst_eq_mul_inv, equiv_mul_left, equiv_snd_eq_inv_mul, equiv_fst_eq_self_iff_mem, Monoid.PushoutI.NormalWord.cons_toList
leftQuotientEquiv πŸ“–CompOp
9 mathmath: Subgroup.transferTransversal_apply, Subgroup.smul_leftQuotientEquiv, Subgroup.smul_apply_eq_smul_apply_inv_smul, Subgroup.transferTransversal_apply', Subgroup.IsComplement'.QuotientMulEquiv_symm_apply, Subgroup.transferTransversal_apply'', Subgroup.IsComplement'.QuotientMulEquiv_apply, leftQuotientEquiv_apply, quotientGroupMk_leftQuotientEquiv
rightQuotientEquiv πŸ“–CompOp
2 mathmath: mk''_rightQuotientEquiv, rightQuotientEquiv_apply
toLeftFun πŸ“–CompOp
3 mathmath: inv_mul_toLeftFun_mem, inv_toLeftFun_mul_mem, Subgroup.smul_toLeftFun
toRightFun πŸ“–CompOp
6 mathmath: mul_inv_toRightFun_mem, Subgroup.closure_mul_image_eq, Subgroup.closure_mul_image_mul_eq_top, Subgroup.closure_mul_image_eq_top, toRightFun_mul_inv_mem, Subgroup.closure_mul_image_eq_top'

Theorems

NameKindAssumesProvesValidatesDepends On
card_left πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Nat.card
Set.Elem
Subgroup.index
β€”Nat.card_congr
Subgroup.isComplement_subgroup_right_iff_bijective
card_mul πŸ“–mathematicalSubgroup.IsComplementNat.card
Set.Elem
β€”Nat.card_prod
Nat.card_eq_of_bijective
card_mul_card πŸ“–mathematicalSubgroup.IsComplementNat.card
Set.Elem
β€”Nat.card_prod
Nat.card_congr
card_right πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Nat.card
Set.Elem
Subgroup.index
β€”Nat.card_congr
Subgroup.isComplement_subgroup_left_iff_bijective
coe_equiv_fst_eq_one_iff_mem πŸ“–mathematicalSubgroup.IsComplement
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”equiv_fst_eq_mul_inv
mul_inv_eq_one
equiv_snd_eq_self_iff_mem
coe_equiv_snd_eq_one_iff_mem πŸ“–mathematicalSubgroup.IsComplement
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”equiv_snd_eq_inv_mul
inv_mul_eq_one
equiv_fst_eq_self_iff_mem
encard_left πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Set.encard
ENat
ENat.instNatCast
Subgroup.index
β€”Set.Finite.cast_ncard_eq
finite_left
ncard_left
encard_right πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Set.encard
ENat
ENat.instNatCast
Subgroup.index
β€”Set.Finite.cast_ncard_eq
finite_right
ncard_right
equiv_fst_eq_iff_leftCosetEquivalence πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
LeftCosetEquivalence
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”LeftCosetEquivalence.eq_1
leftCoset_eq_iff
equiv_fst_mul_equiv_snd
mul_inv_rev
mul_assoc
inv_mul_cancel_right
Subgroup.coe_inv
Subgroup.coe_mul
ExistsUnique.unique
Subgroup.isComplement_iff_existsUnique_inv_mul_mem
equiv_fst_eq_mul_inv
inv_inv
SetLike.mem_coe
mul_mem_cancel_right
Subgroup.instSubgroupClass
mul_inv_cancel_right
equiv_fst_eq_mul_inv πŸ“–mathematicalSubgroup.IsComplementSet
Set.instMembership
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”eq_mul_inv_of_mul_eq
equiv_fst_mul_equiv_snd
equiv_fst_eq_one_of_mem_of_one_mem πŸ“–mathematicalSubgroup.IsComplement
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”equiv_fst_eq_mul_inv
equiv_snd_eq_self_of_mem_of_one_mem
mul_inv_cancel
equiv_fst_eq_self_iff_mem πŸ“–mathematicalSubgroup.IsComplement
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”Subtype.prop
equiv_fst_eq_self_of_mem_of_one_mem
equiv_fst_eq_self_of_mem_of_one_mem πŸ“–mathematicalSubgroup.IsComplement
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”equiv.eq_1
Function.Bijective.surjective
Function.leftInverse_surjInv
Equiv.ofBijective.eq_1
mul_one
Equiv.apply_symm_apply
equiv_fst_mul_equiv_snd πŸ“–mathematicalSubgroup.IsComplementMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set
Set.instMembership
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”Equiv.right_inv
equiv_mul_left πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
equiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.instMembership
Subgroup.mul
β€”equiv_snd_eq_iff_rightCosetEquivalence
op_smul_coe_set
Subgroup.instSubgroupClass
Subgroup.coe_mul
equiv_fst_eq_mul_inv
mul_assoc
equiv_mul_left_of_mem πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
SetLike.instMembership
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
equiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SubgroupClass.toGroup
Subgroup.instSubgroupClass
Set
Set.instMembership
β€”equiv_mul_left
equiv_mul_right πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
equiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.instMembership
SubgroupClass.toGroup
Subgroup.instSubgroupClass
β€”equiv_fst_eq_iff_leftCosetEquivalence
mul_inv_rev
inv_mul_cancel_right
SubgroupClass.toInvMemClass
Subgroup.instSubgroupClass
Subgroup.coe_mul
equiv_snd_eq_inv_mul
mul_assoc
equiv_mul_right_of_mem πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
SetLike.instMembership
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
equiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SubgroupClass.toGroup
Subgroup.instSubgroupClass
Set
Set.instMembership
β€”equiv_mul_right
equiv_one πŸ“–mathematicalSubgroup.IsComplement
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”Equiv.apply_eq_iff_eq_symm_apply
mul_one
equiv_snd_eq_iff_rightCosetEquivalence πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
RightCosetEquivalence
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”RightCosetEquivalence.eq_1
rightCoset_eq_iff
equiv_fst_mul_equiv_snd
mul_inv_rev
mul_assoc
mul_inv_cancel_left
Subgroup.coe_inv
Subgroup.coe_mul
ExistsUnique.unique
Subgroup.isComplement_iff_existsUnique_mul_inv_mem
equiv_snd_eq_inv_mul
inv_inv
SetLike.mem_coe
mul_mem_cancel_left
Subgroup.instSubgroupClass
inv_mul_cancel_left
equiv_snd_eq_inv_mul πŸ“–mathematicalSubgroup.IsComplementSet
Set.instMembership
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”eq_inv_mul_of_mul_eq
equiv_fst_mul_equiv_snd
equiv_snd_eq_one_of_mem_of_one_mem πŸ“–mathematicalSubgroup.IsComplement
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”equiv_snd_eq_inv_mul
equiv_fst_eq_self_of_mem_of_one_mem
inv_mul_cancel
equiv_snd_eq_self_iff_mem πŸ“–mathematicalSubgroup.IsComplement
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”Subtype.prop
equiv_snd_eq_self_of_mem_of_one_mem
equiv_snd_eq_self_of_mem_of_one_mem πŸ“–mathematicalSubgroup.IsComplement
Set
Set.instMembership
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”equiv.eq_1
Function.Bijective.surjective
Function.leftInverse_surjInv
Equiv.ofBijective.eq_1
one_mul
Equiv.apply_symm_apply
equiv_symm_apply πŸ“–mathematicalSubgroup.IsComplementDFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set
Set.instMembership
β€”β€”
existsUnique πŸ“–mathematicalSubgroup.IsComplementExistsUnique
Set.Elem
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set
Set.instMembership
β€”Subgroup.isComplement_iff_existsUnique
finite_left πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Set.Finiteβ€”finite_left_iff
finite_left_iff πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Finite
Set.Elem
Subgroup.FiniteIndex
β€”Equiv.finite_iff
Subgroup.finiteIndex_of_finite_quotient
Subgroup.finite_quotient_of_finiteIndex
finite_right πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Set.Finiteβ€”finite_right_iff
finite_right_iff πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Finite
Set.Elem
Subgroup.FiniteIndex
β€”Equiv.finite_iff
Subgroup.finiteIndex_of_finite_quotient
Subgroup.finite_quotient_of_finiteIndex
inv_mul_toLeftFun_mem πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
SetLike.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set
Set.instMembership
toLeftFun
β€”mul_inv_rev
inv_inv
Subgroup.inv_mem
inv_toLeftFun_mul_mem
inv_toLeftFun_mul_mem πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
SetLike.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set
Set.instMembership
toLeftFun
β€”QuotientGroup.leftRel_apply
Quotient.exact'
quotientGroupMk_leftQuotientEquiv
leftCosetEquivalence_equiv_fst πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
LeftCosetEquivalence
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set
Set.instMembership
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”equiv_fst_eq_mul_inv
inv_mul_cancel_left
SubgroupClass.toInvMemClass
Subgroup.instSubgroupClass
leftQuotientEquiv_apply πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
leftQuotientEquiv
Subgroup.isComplement_range_left
β€”Subgroup.isComplement_range_left
Equiv.apply_eq_iff_eq_symm_apply
mk''_rightQuotientEquiv πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Quotient.mk''
QuotientGroup.rightRel
Set
Set.instMembership
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
rightQuotientEquiv
β€”Equiv.symm_apply_apply
mul_eq πŸ“–mathematicalSubgroup.IsComplementSet
Set.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set.univ
β€”Set.eq_univ_of_forall
ExistsUnique.exists
existsUnique
mul_inv_toRightFun_mem πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
SetLike.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
Set
Set.instMembership
toRightFun
β€”QuotientGroup.rightRel_apply
Quotient.exact'
mk''_rightQuotientEquiv
ncard_left πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Set.ncard
Subgroup.index
β€”Nat.card_coe_set_eq
card_left
ncard_right πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Set.ncard
Subgroup.index
β€”Nat.card_coe_set_eq
card_right
nonempty_left πŸ“–mathematicalSubgroup.IsComplementSet.Nonemptyβ€”Mathlib.Tactic.Contrapose.contrapose₁
nonempty_right πŸ“–mathematicalSubgroup.IsComplementSet.Nonemptyβ€”Mathlib.Tactic.Contrapose.contrapose₁
pairwiseDisjoint_smul πŸ“–mathematicalSubgroup.IsComplementSet.PairwiseDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Monoid.toMulAction
β€”Set.disjoint_iff_forall_ne
quotientGroupMk_leftQuotientEquiv πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
Quotient.mk''
QuotientGroup.leftRel
Set
Set.instMembership
DFunLike.coe
Equiv
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
leftQuotientEquiv
β€”Equiv.symm_apply_apply
rightCosetEquivalence_equiv_snd πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
RightCosetEquivalence
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set
Set.instMembership
Set.Elem
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”RightCosetEquivalence.eq_1
rightCoset_eq_iff
equiv_snd_eq_inv_mul
mul_inv_cancel_right
SubgroupClass.toInvMemClass
Subgroup.instSubgroupClass
rightQuotientEquiv_apply πŸ“–mathematicalQuotient.mk''
QuotientGroup.rightRel
Set
Set.instMembership
Set.range
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
rightQuotientEquiv
Subgroup.isComplement_range_right
β€”Subgroup.isComplement_range_right
Equiv.apply_eq_iff_eq_symm_apply
toRightFun_mul_inv_mem πŸ“–mathematicalSubgroup.IsComplement
SetLike.coe
Subgroup
Subgroup.instSetLike
SetLike.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Set
Set.instMembership
toRightFun
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”mul_inv_rev
inv_inv
Subgroup.inv_mem
mul_inv_toRightFun_mem

Subgroup.IsComplement'

Definitions

NameCategoryTheorems
QuotientMulEquiv πŸ“–CompOp
2 mathmath: QuotientMulEquiv_symm_apply, QuotientMulEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
QuotientMulEquiv_apply πŸ“–mathematicalSubgroup.IsComplement'DFunLike.coe
MulEquiv
HasQuotient.Quotient
Subgroup
QuotientGroup.instHasQuotientSubgroup
SetLike.instMembership
Subgroup.instSetLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
QuotientMulEquiv
Equiv
Equiv.instEquivLike
Subgroup.IsComplement.leftQuotientEquiv
SetLike.coe
β€”β€”
QuotientMulEquiv_symm_apply πŸ“–mathematicalSubgroup.IsComplement'DFunLike.coe
MulEquiv
Subgroup
SetLike.instMembership
Subgroup.instSetLike
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
Subgroup.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
QuotientMulEquiv
Equiv
Equiv.instEquivLike
Equiv.symm
Subgroup.IsComplement.leftQuotientEquiv
SetLike.coe
β€”β€”
card_mul πŸ“–mathematicalSubgroup.IsComplement'Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
β€”Subgroup.IsComplement.card_mul
disjoint πŸ“–mathematicalSubgroup.IsComplement'Disjoint
Subgroup
Subgroup.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
β€”IsCompl.disjoint
isCompl
index_eq_card πŸ“–mathematicalSubgroup.IsComplement'Subgroup.index
Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
β€”Subgroup.IsComplement.card_left
isCompl πŸ“–mathematicalSubgroup.IsComplement'IsCompl
Subgroup
Subgroup.instPartialOrder
CompleteLattice.toBoundedOrder
Subgroup.instCompleteLattice
β€”disjoint_iff_inf_le
mul_one
one_mul
codisjoint_iff_le_sup
Subgroup.mul_mem_sup
sup_eq_top πŸ“–mathematicalSubgroup.IsComplement'Subgroup
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
Subgroup.instCompleteLattice
Top.top
Subgroup.instTop
β€”IsCompl.sup_eq_top
isCompl

---

← Back to Index