| Metric | Count |
DefinitionsAddCon, inhabited, nsmul, zsmul, addCommGroup, addCommMagma, addCommMonoid, addCommSemigroup, addGroup, addMonoid, addSemigroup, addZeroClass, comap, gi, hasAdd, hasNeg, hasSub, hrecOnβ, instCoeTCQuotient, instCompleteLattice, instDecidableEqQuotientOfDecidableCoeForallProp, instFunLikeForallProp, instInfSet, instInhabited, instLE, instMembershipProd, instPartialOrder, liftOn, liftOnAddUnits, liftOnβ, toQuotient, toSetoid, zero, Con, inhabited, comap, commGroup, commMagma, commMonoid, commSemigroup, gi, group, hasDiv, hasInv, hasMul, hrecOnβ, instCoeTCQuotient, instCompleteLattice, instDecidableEqQuotientOfDecidableCoeForallProp, instFunLikeForallProp, instInfSet, instInhabited, instLE, instMembershipProd, instPartialOrder, instPowQuotientNat, liftOn, liftOnUnits, liftOnβ, monoid, mulOneClass, one, semigroup, toQuotient, toSetoid, zpowinst, addConGen, conGen | 68 |
Theoremsadd, add', addConGen_eq, addConGen_idem, addConGen_le, addConGen_mono, addConGen_of_addCon, coe_add, coe_iInf, coe_inf, coe_inj, coe_sInf, coe_zero, comap_rel, eq, ext, ext', ext_iff, hrec_onβ_coe, induction_on, induction_on_addUnits, induction_onβ, inf_iff_and, le_def, liftOnAddUnits_mk, liftOn_coe, map_of_add_left_rel_zero, neg, nsmul, quot_mk_eq_coe, refl, rel_eq_coe, rel_mk, sInf_toSetoid, sSup_def, sSup_eq_addConGen, sub, sup_def, sup_eq_addConGen, toSetoid_bot, toSetoid_eq_bot, toSetoid_eq_top, toSetoid_inj, toSetoid_injective, toSetoid_top, trans, zsmul, coe_iInf, coe_inf, coe_inj, coe_mul, coe_one, coe_sInf, comap_rel, conGen_eq, conGen_idem, conGen_le, conGen_mono, conGen_of_con, div, eq, ext, ext', ext_iff, hrec_onβ_coe, induction_on, induction_on_units, induction_onβ, inf_iff_and, inv, le_def, liftOnUnits_mk, liftOn_coe, map_of_mul_left_rel_one, mul, mul', pow, quot_mk_eq_coe, refl, rel_eq_coe, rel_mk, sInf_toSetoid, sSup_def, sSup_eq_conGen, sup_def, sup_eq_conGen, toSetoid_bot, toSetoid_eq_bot, toSetoid_eq_top, toSetoid_inj, toSetoid_injective, toSetoid_top, trans, zpow | 94 |
| Total | 162 |
| Name | Category | Theorems |
addCommGroup π | CompOp | β |
addCommMagma π | CompOp | β |
addCommMonoid π | CompOp | β |
addCommSemigroup π | CompOp | β |
addGroup π | CompOp | β |
addMonoid π | CompOp | β |
addSemigroup π | CompOp | β |
addZeroClass π | CompOp | 18 mathmath: mk'_surjective, hom_ext_iff, lift_comp_mk', mrange_mk', comap_eq, coe_mk', kerLift_range_eq, kerLift_mk, mk'_ker, lift_mk', lift_range, kerLift_injective, lift_surjective_of_surjective, map_apply, lift_apply_mk', quotientKerEquivOfRightInverse_apply, lift_coe, coe_zero
|
comap π | CompOp | 8 mathmath: comap_conGen_equiv, comapQuotientEquivOfSurj_symm_mk, comap_eq, comap_rel, comap_conGen_of_bijective, comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_mk, le_comap_conGen
|
gi π | CompOp | β |
hasAdd π | CompOp | 9 mathmath: ker_mkAddHom_eq, comapQuotientEquivOfSurj_symm_mk, coe_add, mkAddHom_apply, quotientKerEquivOfRightInverse_apply, comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_mk, congr_mk, quotientKerEquivOfRightInverse_symm_apply
|
hasNeg π | CompOp | β |
hasSub π | CompOp | β |
hrecOnβ π | CompOp | 1 mathmath: hrec_onβ_coe
|
instCoeTCQuotient π | CompOp | β |
instCompleteLattice π | CompOp | 10 mathmath: sSup_eq_addConGen, sup_def, toSetoid_top, toSetoid_bot, inf_iff_and, sSup_def, sup_eq_addConGen, toSetoid_eq_bot, toSetoid_eq_top, coe_inf
|
instDecidableEqQuotientOfDecidableCoeForallProp π | CompOp | β |
instFunLikeForallProp π | CompOp | 32 mathmath: sSup_eq_addConGen, eq, sup_def, liftOnAddUnits_mk, coe_inj, coe_iInf, addConGen_idem, addConGen_of_addCon, AddLocalization.r_of_eq, ker_rel, inf_iff_and, quot_mk_eq_coe, rel_mk, le_def, mem_addSubgroup_iff, AddLocalization.r_iff_exists, AddLocalization.zero_rel, coe_sInf, ker_apply, AddSubmonoid.LocalizationMap.eq', AddLocalization.mk_eq_mk_iff, rel_eq_coe, sSup_def, AddMonoid.Coprod.mk_eq_mk, comap_rel, sup_eq_addConGen, ext_iff, map_apply, AddLocalization.r_iff_oreEqv_r, refl, coe_inf, AddMonoid.Coprod.con_neg_add_cancel
|
instInfSet π | CompOp | 4 mathmath: coe_iInf, coe_sInf, addConGen_eq, sInf_toSetoid
|
instInhabited π | CompOp | β |
instLE π | CompOp | 11 mathmath: le_iff, le_def, AddSubgroup.orderIsoAddCon_symm_apply_coe, addConGen_mono, AddSubgroup.orderIsoAddCon_apply, orderIsoOp_apply, addConGen_le, QuotientAddGroup.con_mono, le_comap_conGen, orderIsoOp_symm_apply, QuotientAddGroup.con_le_iff
|
instMembershipProd π | CompOp | 1 mathmath: mem_coe
|
instPartialOrder π | CompOp | β |
liftOn π | CompOp | 2 mathmath: liftOn_coe, CharacterModule.homEquiv_apply_apply
|
liftOnAddUnits π | CompOp | 1 mathmath: liftOnAddUnits_mk
|
liftOnβ π | CompOp | β |
toQuotient π | CompOp | 17 mathmath: eq, FreeAddMonoid.toPiTensorProduct, quot_mk_eq_coe, comapQuotientEquivOfSurj_symm_mk, coe_add, coe_mk', coe_vadd, kerLift_mk, mkAddHom_apply, liftOn_coe, map_apply, comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_mk, lift_coe, coe_zero, congr_mk, quotientKerEquivOfRightInverse_symm_apply
|
toSetoid π | CompOp | 10 mathmath: toSetoid_top, toSetoid_bot, Module.DirectLimit.quotMk_of, rel_eq_coe, toSetoid_injective, toSetoid_eq_bot, comapQuotientEquivOfSurj_symm_mk', toSetoid_inj, sInf_toSetoid, toSetoid_eq_top
|
zero π | CompOp | β |
| Name | Category | Theorems |
comap π | CompOp | 8 mathmath: comap_conGen_of_bijective, comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_mk, comapQuotientEquivOfSurj_symm_mk, comap_eq, le_comap_conGen, comap_conGen_equiv, comap_rel
|
commGroup π | CompOp | β |
commMagma π | CompOp | β |
commMonoid π | CompOp | β |
commSemigroup π | CompOp | β |
gi π | CompOp | β |
group π | CompOp | β |
hasDiv π | CompOp | β |
hasInv π | CompOp | β |
hasMul π | CompOp | 9 mathmath: mkMulHom_apply, comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_mk, quotientKerEquivOfRightInverse_symm_apply, comapQuotientEquivOfSurj_symm_mk, quotientKerEquivOfRightInverse_apply, congr_mk, coe_mul, ker_mkMulHom_eq
|
hrecOnβ π | CompOp | 1 mathmath: hrec_onβ_coe
|
instCoeTCQuotient π | CompOp | β |
instCompleteLattice π | CompOp | 14 mathmath: RingCon.toCon_eq_bot, sup_eq_conGen, coe_inf, toSetoid_eq_bot, sSup_eq_conGen, sup_def, toSetoid_bot, inf_iff_and, sSup_def, RingCon.toCon_eq_top, toSetoid_top, toSetoid_eq_top, RingCon.toCon_bot, RingCon.toCon_top
|
instDecidableEqQuotientOfDecidableCoeForallProp π | CompOp | β |
instFunLikeForallProp π | CompOp | 35 mathmath: Localization.one_rel, liftOnUnits_mk, RingCon.rel_mk, sup_eq_conGen, ker_rel, conGen_idem, refl, ker_apply, coe_inf, Monoid.Coprod.con_inv_mul_cancel, mem_subgroup_iff, rel_mk, Localization.r_of_eq, coe_iInf, eq, rel_eq_coe, sSup_eq_conGen, coe_inj, sup_def, Localization.r_iff_exists, RingCon.coe_mk, conGen_of_con, le_def, Submonoid.LocalizationMap.eq', inf_iff_and, coe_sInf, sSup_def, map_apply, Localization.r_iff_oreEqv_r, quot_mk_eq_coe, RingCon.toCon_coe_eq_coe, Monoid.Coprod.mk_eq_mk, comap_rel, ext_iff, Localization.mk_eq_mk_iff
|
instInfSet π | CompOp | 4 mathmath: sInf_toSetoid, conGen_eq, coe_iInf, coe_sInf
|
instInhabited π | CompOp | β |
instLE π | CompOp | 11 mathmath: le_iff, QuotientGroup.con_le_iff, orderIsoOp_symm_apply, conGen_le, Subgroup.orderIsoCon_apply, conGen_mono, orderIsoOp_apply, le_def, Subgroup.orderIsoCon_symm_apply_coe, QuotientGroup.con_mono, le_comap_conGen
|
instMembershipProd π | CompOp | 1 mathmath: mem_coe
|
instPartialOrder π | CompOp | β |
instPowQuotientNat π | CompOp | β |
liftOn π | CompOp | 1 mathmath: liftOn_coe
|
liftOnUnits π | CompOp | 1 mathmath: liftOnUnits_mk
|
liftOnβ π | CompOp | β |
monoid π | CompOp | β |
mulOneClass π | CompOp | 19 mathmath: hom_ext_iff, lift_surjective_of_surjective, mk'_surjective, kerLift_mk, lift_comp_mk', Monoid.CoprodI.of_apply, kerLift_range_eq, quotientKerEquivOfRightInverse_apply, comap_eq, coe_mk', coe_one, lift_mk', lift_coe, lift_apply_mk', mk'_ker, lift_range, map_apply, kerLift_injective, mrange_mk'
|
one π | CompOp | β |
semigroup π | CompOp | β |
toQuotient π | CompOp | 16 mathmath: mkMulHom_apply, kerLift_mk, comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_mk, liftOn_coe, eq, quotientKerEquivOfRightInverse_symm_apply, comapQuotientEquivOfSurj_symm_mk, coe_smul, coe_mk', coe_one, congr_mk, lift_coe, coe_mul, map_apply, quot_mk_eq_coe
|
toSetoid π | CompOp | 19 mathmath: TwoSidedIdeal.orderIsoMatrix_apply_ringCon_r, sInf_toSetoid, RingCon.comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_symm_mk', RingCon.sInf_toSetoid, RingCon.factorβ_mk, toSetoid_eq_bot, rel_eq_coe, RingCon.quotientQuotientEquivQuotientβ_mk_mk, toSetoid_inj, RingCon.quotientQuotientEquivQuotient_mk_mk, toSetoid_bot, RingCon.quotientQuotientEquivQuotientβ_symm_mk, TwoSidedIdeal.orderIsoMatrix_symm_apply_ringCon_r, toSetoid_injective, toSetoid_top, RingCon.rel_eq_coe, RingCon.quotientQuotientEquivQuotient_symm_mk, toSetoid_eq_top
|
zpowinst π | CompOp | β |