Documentation Verification Report

Defs

πŸ“ Source: Mathlib/GroupTheory/Congruence/Defs.lean

Statistics

MetricCount
DefinitionsAddCon, inhabited, nsmul, zsmul, addCommGroup, addCommMagma, addCommMonoid, addCommSemigroup, addGroup, addMonoid, addSemigroup, addZeroClass, comap, gi, hasAdd, hasNeg, hasSub, hrecOnβ‚‚, instCoeTCQuotient, instCompleteLattice, instDecidableEqQuotientOfDecidableCoeForallProp, instFunLikeForallProp, instInfSet, instInhabited, instLE, instMembershipProd, instPartialOrder, liftOn, liftOnAddUnits, liftOnβ‚‚, toQuotient, toSetoid, zero, Con, inhabited, comap, commGroup, commMagma, commMonoid, commSemigroup, gi, group, hasDiv, hasInv, hasMul, hrecOnβ‚‚, instCoeTCQuotient, instCompleteLattice, instDecidableEqQuotientOfDecidableCoeForallProp, instFunLikeForallProp, instInfSet, instInhabited, instLE, instMembershipProd, instPartialOrder, instPowQuotientNat, liftOn, liftOnUnits, liftOnβ‚‚, monoid, mulOneClass, one, semigroup, toQuotient, toSetoid, zpowinst, addConGen, conGen
68
Theoremsadd, add', addConGen_eq, addConGen_idem, addConGen_le, addConGen_mono, addConGen_of_addCon, coe_add, coe_iInf, coe_inf, coe_inj, coe_sInf, coe_zero, comap_rel, eq, ext, ext', ext_iff, hrec_onβ‚‚_coe, induction_on, induction_on_addUnits, induction_onβ‚‚, inf_iff_and, le_def, liftOnAddUnits_mk, liftOn_coe, map_of_add_left_rel_zero, neg, nsmul, quot_mk_eq_coe, refl, rel_eq_coe, rel_mk, sInf_toSetoid, sSup_def, sSup_eq_addConGen, sub, sup_def, sup_eq_addConGen, toSetoid_bot, toSetoid_eq_bot, toSetoid_eq_top, toSetoid_inj, toSetoid_injective, toSetoid_top, trans, zsmul, coe_iInf, coe_inf, coe_inj, coe_mul, coe_one, coe_sInf, comap_rel, conGen_eq, conGen_idem, conGen_le, conGen_mono, conGen_of_con, div, eq, ext, ext', ext_iff, hrec_onβ‚‚_coe, induction_on, induction_on_units, induction_onβ‚‚, inf_iff_and, inv, le_def, liftOnUnits_mk, liftOn_coe, map_of_mul_left_rel_one, mul, mul', pow, quot_mk_eq_coe, refl, rel_eq_coe, rel_mk, sInf_toSetoid, sSup_def, sSup_eq_conGen, sup_def, sup_eq_conGen, toSetoid_bot, toSetoid_eq_bot, toSetoid_eq_top, toSetoid_inj, toSetoid_injective, toSetoid_top, trans, zpow
94
Total162

AddCon

Definitions

NameCategoryTheorems
addCommGroup πŸ“–CompOpβ€”
addCommMagma πŸ“–CompOpβ€”
addCommMonoid πŸ“–CompOpβ€”
addCommSemigroup πŸ“–CompOpβ€”
addGroup πŸ“–CompOpβ€”
addMonoid πŸ“–CompOpβ€”
addSemigroup πŸ“–CompOpβ€”
addZeroClass πŸ“–CompOp
18 mathmath: mk'_surjective, hom_ext_iff, lift_comp_mk', mrange_mk', comap_eq, coe_mk', kerLift_range_eq, kerLift_mk, mk'_ker, lift_mk', lift_range, kerLift_injective, lift_surjective_of_surjective, map_apply, lift_apply_mk', quotientKerEquivOfRightInverse_apply, lift_coe, coe_zero
comap πŸ“–CompOp
8 mathmath: comap_conGen_equiv, comapQuotientEquivOfSurj_symm_mk, comap_eq, comap_rel, comap_conGen_of_bijective, comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_mk, le_comap_conGen
gi πŸ“–CompOpβ€”
hasAdd πŸ“–CompOp
9 mathmath: ker_mkAddHom_eq, comapQuotientEquivOfSurj_symm_mk, coe_add, mkAddHom_apply, quotientKerEquivOfRightInverse_apply, comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_mk, congr_mk, quotientKerEquivOfRightInverse_symm_apply
hasNeg πŸ“–CompOpβ€”
hasSub πŸ“–CompOpβ€”
hrecOnβ‚‚ πŸ“–CompOp
1 mathmath: hrec_onβ‚‚_coe
instCoeTCQuotient πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOp
10 mathmath: sSup_eq_addConGen, sup_def, toSetoid_top, toSetoid_bot, inf_iff_and, sSup_def, sup_eq_addConGen, toSetoid_eq_bot, toSetoid_eq_top, coe_inf
instDecidableEqQuotientOfDecidableCoeForallProp πŸ“–CompOpβ€”
instFunLikeForallProp πŸ“–CompOp
32 mathmath: sSup_eq_addConGen, eq, sup_def, liftOnAddUnits_mk, coe_inj, coe_iInf, addConGen_idem, addConGen_of_addCon, AddLocalization.r_of_eq, ker_rel, inf_iff_and, quot_mk_eq_coe, rel_mk, le_def, mem_addSubgroup_iff, AddLocalization.r_iff_exists, AddLocalization.zero_rel, coe_sInf, ker_apply, AddSubmonoid.LocalizationMap.eq', AddLocalization.mk_eq_mk_iff, rel_eq_coe, sSup_def, AddMonoid.Coprod.mk_eq_mk, comap_rel, sup_eq_addConGen, ext_iff, map_apply, AddLocalization.r_iff_oreEqv_r, refl, coe_inf, AddMonoid.Coprod.con_neg_add_cancel
instInfSet πŸ“–CompOp
4 mathmath: coe_iInf, coe_sInf, addConGen_eq, sInf_toSetoid
instInhabited πŸ“–CompOpβ€”
instLE πŸ“–CompOp
11 mathmath: le_iff, le_def, AddSubgroup.orderIsoAddCon_symm_apply_coe, addConGen_mono, AddSubgroup.orderIsoAddCon_apply, orderIsoOp_apply, addConGen_le, QuotientAddGroup.con_mono, le_comap_conGen, orderIsoOp_symm_apply, QuotientAddGroup.con_le_iff
instMembershipProd πŸ“–CompOp
1 mathmath: mem_coe
instPartialOrder πŸ“–CompOpβ€”
liftOn πŸ“–CompOp
2 mathmath: liftOn_coe, CharacterModule.homEquiv_apply_apply
liftOnAddUnits πŸ“–CompOp
1 mathmath: liftOnAddUnits_mk
liftOnβ‚‚ πŸ“–CompOpβ€”
toQuotient πŸ“–CompOp
17 mathmath: eq, FreeAddMonoid.toPiTensorProduct, quot_mk_eq_coe, comapQuotientEquivOfSurj_symm_mk, coe_add, coe_mk', coe_vadd, kerLift_mk, mkAddHom_apply, liftOn_coe, map_apply, comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_mk, lift_coe, coe_zero, congr_mk, quotientKerEquivOfRightInverse_symm_apply
toSetoid πŸ“–CompOp
10 mathmath: toSetoid_top, toSetoid_bot, Module.DirectLimit.quotMk_of, rel_eq_coe, toSetoid_injective, toSetoid_eq_bot, comapQuotientEquivOfSurj_symm_mk', toSetoid_inj, sInf_toSetoid, toSetoid_eq_top
zero πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–β€”DFunLike.coe
AddCon
instFunLikeForallProp
β€”β€”add'
add' πŸ“–β€”toSetoidβ€”β€”β€”
addConGen_eq πŸ“–mathematicalβ€”addConGen
InfSet.sInf
AddCon
instInfSet
setOf
β€”le_antisymm
le_sInf
Setoid.refl'
Setoid.symm'
Setoid.trans'
add
sInf_le
addConGen_idem πŸ“–mathematicalβ€”addConGen
DFunLike.coe
AddCon
instFunLikeForallProp
β€”addConGen_of_addCon
addConGen_le πŸ“–mathematicalDFunLike.coe
AddCon
instFunLikeForallProp
instLE
addConGen
β€”addConGen_eq
sInf_le
addConGen_mono πŸ“–mathematicalβ€”AddCon
instLE
addConGen
β€”addConGen_le
addConGen_of_addCon πŸ“–mathematicalβ€”addConGen
DFunLike.coe
AddCon
instFunLikeForallProp
β€”le_antisymm
addConGen_eq
sInf_le
coe_add πŸ“–mathematicalβ€”toQuotient
Quotient
hasAdd
β€”β€”
coe_iInf πŸ“–mathematicalβ€”DFunLike.coe
AddCon
instFunLikeForallProp
iInf
instInfSet
Pi.infSet
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Prop.instCompleteLattice
β€”iInf.eq_1
coe_sInf
Set.range_comp
sInf_range
coe_inf πŸ“–mathematicalβ€”DFunLike.coe
AddCon
instFunLikeForallProp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
instCompleteLattice
Pi.instMinForall_mathlib
Prop.instCompleteLattice
β€”β€”
coe_inj πŸ“–mathematicalβ€”DFunLike.coe
AddCon
instFunLikeForallProp
β€”DFunLike.coe_injective
coe_sInf πŸ“–mathematicalβ€”DFunLike.coe
AddCon
instFunLikeForallProp
InfSet.sInf
instInfSet
Pi.infSet
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Prop.instCompleteLattice
Set.image
β€”sInf_image
iInf_apply
iInf_Prop_eq
coe_zero πŸ“–mathematicalβ€”toQuotient
AddZero.toAdd
AddZeroClass.toAddZero
AddZero.toZero
Quotient
addZeroClass
β€”β€”
comap_rel πŸ“–mathematicalβ€”DFunLike.coe
AddCon
instFunLikeForallProp
comap
β€”β€”
eq πŸ“–mathematicalβ€”toQuotient
DFunLike.coe
AddCon
instFunLikeForallProp
β€”Quotient.eq''
ext πŸ“–β€”DFunLike.coe
AddCon
instFunLikeForallProp
β€”β€”ext'
ext' πŸ“–β€”DFunLike.coe
AddCon
instFunLikeForallProp
β€”β€”DFunLike.coe_injective
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
AddCon
instFunLikeForallProp
β€”ext
hrec_onβ‚‚_coe πŸ“–mathematicaltoQuotienthrecOnβ‚‚β€”β€”
induction_on πŸ“–β€”toQuotientβ€”β€”Quotient.inductionOn'
induction_on_addUnits πŸ“–β€”Quotient
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addMonoid
toQuotient
AddZero.toZero
DFunLike.coe
AddCon
instFunLikeForallProp
eq
β€”β€”eq
induction_onβ‚‚ πŸ“–β€”toQuotientβ€”β€”Quotient.inductionOnβ‚‚'
inf_iff_and πŸ“–mathematicalβ€”DFunLike.coe
AddCon
instFunLikeForallProp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
instCompleteLattice
β€”β€”
le_def πŸ“–mathematicalβ€”AddCon
instLE
DFunLike.coe
instFunLikeForallProp
β€”β€”
liftOnAddUnits_mk πŸ“–mathematicalQuotient
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
addMonoid
toQuotient
AddZero.toZero
liftOnAddUnits
DFunLike.coe
AddCon
instFunLikeForallProp
eq
β€”β€”
liftOn_coe πŸ“–mathematicalβ€”liftOn
toQuotient
β€”β€”
map_of_add_left_rel_zero πŸ“–β€”DFunLike.coe
AddCon
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLikeForallProp
AddZero.toZero
β€”β€”eq
zero_add
add_assoc
add_zero
AddUnits.ext
neg πŸ“–mathematicalDFunLike.coe
AddCon
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instFunLikeForallProp
SubNegMonoid.toNegβ€”map_of_add_left_rel_zero
neg_add_cancel
refl
nsmul πŸ“–mathematicalDFunLike.coe
AddCon
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLikeForallProp
AddMonoid.toNatSMulβ€”zero_nsmul
refl
succ_nsmul
add
quot_mk_eq_coe πŸ“–mathematicalβ€”DFunLike.coe
AddCon
instFunLikeForallProp
toQuotient
β€”β€”
refl πŸ“–mathematicalβ€”DFunLike.coe
AddCon
instFunLikeForallProp
β€”Setoid.refl'
rel_eq_coe πŸ“–mathematicalβ€”toSetoid
DFunLike.coe
AddCon
instFunLikeForallProp
β€”β€”
rel_mk πŸ“–mathematicalβ€”DFunLike.coe
AddCon
instFunLikeForallProp
β€”β€”
sInf_toSetoid πŸ“–mathematicalβ€”toSetoid
InfSet.sInf
AddCon
instInfSet
Setoid.instInfSet
Set.image
β€”Setoid.ext
sSup_def πŸ“–mathematicalβ€”SupSet.sSup
AddCon
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
addConGen
Pi.supSet
Prop.instCompleteLattice
Set.image
DFunLike.coe
instFunLikeForallProp
β€”sSup_eq_addConGen
sSup_image
iSup_apply
iSup_Prop_eq
sSup_eq_addConGen πŸ“–mathematicalβ€”SupSet.sSup
AddCon
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
addConGen
Set
Set.instMembership
DFunLike.coe
instFunLikeForallProp
β€”addConGen_eq
Set.ext
sub πŸ“–mathematicalDFunLike.coe
AddCon
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instFunLikeForallProp
SubNegMonoid.toSubβ€”sub_eq_add_neg
add
neg
sup_def πŸ“–mathematicalβ€”AddCon
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
addConGen
Pi.instMaxForall_mathlib
Prop.instCompleteLattice
DFunLike.coe
instFunLikeForallProp
β€”sup_eq_addConGen
sup_eq_addConGen πŸ“–mathematicalβ€”AddCon
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
addConGen
DFunLike.coe
instFunLikeForallProp
β€”addConGen_eq
le_def
toSetoid_bot πŸ“–mathematicalβ€”toSetoid
Bot.bot
AddCon
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Setoid.completeLattice
β€”β€”
toSetoid_eq_bot πŸ“–mathematicalβ€”toSetoid
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Setoid.completeLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
AddCon
instCompleteLattice
β€”toSetoid_bot
toSetoid_eq_top πŸ“–mathematicalβ€”toSetoid
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Setoid.completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
AddCon
instCompleteLattice
β€”toSetoid_top
toSetoid_inj πŸ“–mathematicalβ€”toSetoidβ€”toSetoid_injective
toSetoid_injective πŸ“–mathematicalβ€”AddCon
toSetoid
β€”add'
toSetoid_top πŸ“–mathematicalβ€”toSetoid
Top.top
AddCon
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Setoid.completeLattice
β€”β€”
trans πŸ“–β€”DFunLike.coe
AddCon
instFunLikeForallProp
β€”β€”Setoid.trans'
zsmul πŸ“–mathematicalDFunLike.coe
AddCon
AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instFunLikeForallProp
SubNegMonoid.toZSMulβ€”natCast_zsmul
nsmul
negSucc_zsmul
neg

AddCon.Quotient

Definitions

NameCategoryTheorems
inhabited πŸ“–CompOpβ€”
nsmul πŸ“–CompOpβ€”
zsmul πŸ“–CompOpβ€”

Con

Definitions

NameCategoryTheorems
comap πŸ“–CompOp
8 mathmath: comap_conGen_of_bijective, comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_mk, comapQuotientEquivOfSurj_symm_mk, comap_eq, le_comap_conGen, comap_conGen_equiv, comap_rel
commGroup πŸ“–CompOpβ€”
commMagma πŸ“–CompOpβ€”
commMonoid πŸ“–CompOpβ€”
commSemigroup πŸ“–CompOpβ€”
gi πŸ“–CompOpβ€”
group πŸ“–CompOpβ€”
hasDiv πŸ“–CompOpβ€”
hasInv πŸ“–CompOpβ€”
hasMul πŸ“–CompOp
9 mathmath: mkMulHom_apply, comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_mk, quotientKerEquivOfRightInverse_symm_apply, comapQuotientEquivOfSurj_symm_mk, quotientKerEquivOfRightInverse_apply, congr_mk, coe_mul, ker_mkMulHom_eq
hrecOnβ‚‚ πŸ“–CompOp
1 mathmath: hrec_onβ‚‚_coe
instCoeTCQuotient πŸ“–CompOpβ€”
instCompleteLattice πŸ“–CompOp
14 mathmath: RingCon.toCon_eq_bot, sup_eq_conGen, coe_inf, toSetoid_eq_bot, sSup_eq_conGen, sup_def, toSetoid_bot, inf_iff_and, sSup_def, RingCon.toCon_eq_top, toSetoid_top, toSetoid_eq_top, RingCon.toCon_bot, RingCon.toCon_top
instDecidableEqQuotientOfDecidableCoeForallProp πŸ“–CompOpβ€”
instFunLikeForallProp πŸ“–CompOp
35 mathmath: Localization.one_rel, liftOnUnits_mk, RingCon.rel_mk, sup_eq_conGen, ker_rel, conGen_idem, refl, ker_apply, coe_inf, Monoid.Coprod.con_inv_mul_cancel, mem_subgroup_iff, rel_mk, Localization.r_of_eq, coe_iInf, eq, rel_eq_coe, sSup_eq_conGen, coe_inj, sup_def, Localization.r_iff_exists, RingCon.coe_mk, conGen_of_con, le_def, Submonoid.LocalizationMap.eq', inf_iff_and, coe_sInf, sSup_def, map_apply, Localization.r_iff_oreEqv_r, quot_mk_eq_coe, RingCon.toCon_coe_eq_coe, Monoid.Coprod.mk_eq_mk, comap_rel, ext_iff, Localization.mk_eq_mk_iff
instInfSet πŸ“–CompOp
4 mathmath: sInf_toSetoid, conGen_eq, coe_iInf, coe_sInf
instInhabited πŸ“–CompOpβ€”
instLE πŸ“–CompOp
11 mathmath: le_iff, QuotientGroup.con_le_iff, orderIsoOp_symm_apply, conGen_le, Subgroup.orderIsoCon_apply, conGen_mono, orderIsoOp_apply, le_def, Subgroup.orderIsoCon_symm_apply_coe, QuotientGroup.con_mono, le_comap_conGen
instMembershipProd πŸ“–CompOp
1 mathmath: mem_coe
instPartialOrder πŸ“–CompOpβ€”
instPowQuotientNat πŸ“–CompOpβ€”
liftOn πŸ“–CompOp
1 mathmath: liftOn_coe
liftOnUnits πŸ“–CompOp
1 mathmath: liftOnUnits_mk
liftOnβ‚‚ πŸ“–CompOpβ€”
monoid πŸ“–CompOpβ€”
mulOneClass πŸ“–CompOp
19 mathmath: hom_ext_iff, lift_surjective_of_surjective, mk'_surjective, kerLift_mk, lift_comp_mk', Monoid.CoprodI.of_apply, kerLift_range_eq, quotientKerEquivOfRightInverse_apply, comap_eq, coe_mk', coe_one, lift_mk', lift_coe, lift_apply_mk', mk'_ker, lift_range, map_apply, kerLift_injective, mrange_mk'
one πŸ“–CompOpβ€”
semigroup πŸ“–CompOpβ€”
toQuotient πŸ“–CompOp
16 mathmath: mkMulHom_apply, kerLift_mk, comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_mk, liftOn_coe, eq, quotientKerEquivOfRightInverse_symm_apply, comapQuotientEquivOfSurj_symm_mk, coe_smul, coe_mk', coe_one, congr_mk, lift_coe, coe_mul, map_apply, quot_mk_eq_coe
toSetoid πŸ“–CompOp
19 mathmath: TwoSidedIdeal.orderIsoMatrix_apply_ringCon_r, sInf_toSetoid, RingCon.comapQuotientEquivOfSurj_symm_mk', comapQuotientEquivOfSurj_symm_mk', RingCon.sInf_toSetoid, RingCon.factorₐ_mk, toSetoid_eq_bot, rel_eq_coe, RingCon.quotientQuotientEquivQuotientₐ_mk_mk, toSetoid_inj, RingCon.quotientQuotientEquivQuotient_mk_mk, toSetoid_bot, RingCon.quotientQuotientEquivQuotientₐ_symm_mk, TwoSidedIdeal.orderIsoMatrix_symm_apply_ringCon_r, toSetoid_injective, toSetoid_top, RingCon.rel_eq_coe, RingCon.quotientQuotientEquivQuotient_symm_mk, toSetoid_eq_top
zpowinst πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_iInf πŸ“–mathematicalβ€”DFunLike.coe
Con
instFunLikeForallProp
iInf
instInfSet
Pi.infSet
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Prop.instCompleteLattice
β€”iInf.eq_1
coe_sInf
Set.range_comp
sInf_range
coe_inf πŸ“–mathematicalβ€”DFunLike.coe
Con
instFunLikeForallProp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
instCompleteLattice
Pi.instMinForall_mathlib
Prop.instCompleteLattice
β€”β€”
coe_inj πŸ“–mathematicalβ€”DFunLike.coe
Con
instFunLikeForallProp
β€”DFunLike.coe_injective
coe_mul πŸ“–mathematicalβ€”toQuotient
Quotient
hasMul
β€”β€”
coe_one πŸ“–mathematicalβ€”toQuotient
MulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
Quotient
mulOneClass
β€”β€”
coe_sInf πŸ“–mathematicalβ€”DFunLike.coe
Con
instFunLikeForallProp
InfSet.sInf
instInfSet
Pi.infSet
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Prop.instCompleteLattice
Set.image
β€”sInf_image
iInf_apply
iInf_Prop_eq
comap_rel πŸ“–mathematicalβ€”DFunLike.coe
Con
instFunLikeForallProp
comap
β€”β€”
conGen_eq πŸ“–mathematicalβ€”conGen
InfSet.sInf
Con
instInfSet
setOf
β€”le_antisymm
le_sInf
Setoid.refl'
Setoid.symm'
Setoid.trans'
mul
sInf_le
conGen_idem πŸ“–mathematicalβ€”conGen
DFunLike.coe
Con
instFunLikeForallProp
β€”conGen_of_con
conGen_le πŸ“–mathematicalDFunLike.coe
Con
instFunLikeForallProp
instLE
conGen
β€”conGen_eq
sInf_le
conGen_mono πŸ“–mathematicalβ€”Con
instLE
conGen
β€”conGen_le
conGen_of_con πŸ“–mathematicalβ€”conGen
DFunLike.coe
Con
instFunLikeForallProp
β€”le_antisymm
conGen_eq
sInf_le
div πŸ“–mathematicalDFunLike.coe
Con
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instFunLikeForallProp
DivInvMonoid.toDivβ€”div_eq_mul_inv
mul
inv
eq πŸ“–mathematicalβ€”toQuotient
DFunLike.coe
Con
instFunLikeForallProp
β€”Quotient.eq''
ext πŸ“–β€”DFunLike.coe
Con
instFunLikeForallProp
β€”β€”ext'
ext' πŸ“–β€”DFunLike.coe
Con
instFunLikeForallProp
β€”β€”DFunLike.coe_injective
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Con
instFunLikeForallProp
β€”ext
hrec_onβ‚‚_coe πŸ“–mathematicaltoQuotienthrecOnβ‚‚β€”β€”
induction_on πŸ“–β€”toQuotientβ€”β€”Quotient.inductionOn'
induction_on_units πŸ“–β€”Quotient
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
toQuotient
MulOne.toOne
DFunLike.coe
Con
instFunLikeForallProp
eq
β€”β€”eq
induction_onβ‚‚ πŸ“–β€”toQuotientβ€”β€”Quotient.inductionOnβ‚‚'
inf_iff_and πŸ“–mathematicalβ€”DFunLike.coe
Con
instFunLikeForallProp
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
instCompleteLattice
β€”β€”
inv πŸ“–mathematicalDFunLike.coe
Con
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instFunLikeForallProp
DivInvMonoid.toInvβ€”map_of_mul_left_rel_one
inv_mul_cancel
refl
le_def πŸ“–mathematicalβ€”Con
instLE
DFunLike.coe
instFunLikeForallProp
β€”β€”
liftOnUnits_mk πŸ“–mathematicalQuotient
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
monoid
toQuotient
MulOne.toOne
liftOnUnits
DFunLike.coe
Con
instFunLikeForallProp
eq
β€”β€”
liftOn_coe πŸ“–mathematicalβ€”liftOn
toQuotient
β€”β€”
map_of_mul_left_rel_one πŸ“–β€”DFunLike.coe
Con
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLikeForallProp
MulOne.toOne
β€”β€”one_mul
mul_assoc
mul_one
Units.ext
mul πŸ“–β€”DFunLike.coe
Con
instFunLikeForallProp
β€”β€”mul'
mul' πŸ“–β€”toSetoidβ€”β€”β€”
pow πŸ“–mathematicalDFunLike.coe
Con
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLikeForallProp
Monoid.toNatPowβ€”pow_zero
refl
pow_succ
mul
quot_mk_eq_coe πŸ“–mathematicalβ€”DFunLike.coe
Con
instFunLikeForallProp
toQuotient
β€”β€”
refl πŸ“–mathematicalβ€”DFunLike.coe
Con
instFunLikeForallProp
β€”Setoid.refl'
rel_eq_coe πŸ“–mathematicalβ€”toSetoid
DFunLike.coe
Con
instFunLikeForallProp
β€”β€”
rel_mk πŸ“–mathematicalβ€”DFunLike.coe
Con
instFunLikeForallProp
β€”β€”
sInf_toSetoid πŸ“–mathematicalβ€”toSetoid
InfSet.sInf
Con
instInfSet
Setoid.instInfSet
Set.image
β€”Setoid.ext
sSup_def πŸ“–mathematicalβ€”SupSet.sSup
Con
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
conGen
Pi.supSet
Prop.instCompleteLattice
Set.image
DFunLike.coe
instFunLikeForallProp
β€”sSup_eq_conGen
sSup_image
iSup_apply
iSup_Prop_eq
sSup_eq_conGen πŸ“–mathematicalβ€”SupSet.sSup
Con
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
instCompleteLattice
conGen
Set
Set.instMembership
DFunLike.coe
instFunLikeForallProp
β€”conGen_eq
Set.ext
sup_def πŸ“–mathematicalβ€”Con
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
conGen
Pi.instMaxForall_mathlib
Prop.instCompleteLattice
DFunLike.coe
instFunLikeForallProp
β€”sup_eq_conGen
sup_eq_conGen πŸ“–mathematicalβ€”Con
SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
conGen
DFunLike.coe
instFunLikeForallProp
β€”conGen_eq
toSetoid_bot πŸ“–mathematicalβ€”toSetoid
Bot.bot
Con
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Setoid.completeLattice
β€”β€”
toSetoid_eq_bot πŸ“–mathematicalβ€”toSetoid
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Setoid.completeLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Con
instCompleteLattice
β€”toSetoid_bot
toSetoid_eq_top πŸ“–mathematicalβ€”toSetoid
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Setoid.completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Con
instCompleteLattice
β€”toSetoid_top
toSetoid_inj πŸ“–mathematicalβ€”toSetoidβ€”toSetoid_injective
toSetoid_injective πŸ“–mathematicalβ€”Con
toSetoid
β€”mul'
toSetoid_top πŸ“–mathematicalβ€”toSetoid
Top.top
Con
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Setoid.completeLattice
β€”β€”
trans πŸ“–β€”DFunLike.coe
Con
instFunLikeForallProp
β€”β€”Setoid.trans'
zpow πŸ“–mathematicalDFunLike.coe
Con
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instFunLikeForallProp
DivInvMonoid.toZPowβ€”zpow_natCast
pow
zpow_negSucc
inv

Con.Quotient

Definitions

NameCategoryTheorems
inhabited πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
AddCon πŸ“–CompData
48 mathmath: AddCon.sSup_eq_addConGen, AddCon.eq, AddCon.sup_def, AddCon.toSetoid_top, AddCon.liftOnAddUnits_mk, AddCon.coe_inj, AddCon.toSetoid_bot, AddCon.coe_iInf, AddCon.addConGen_idem, AddCon.addConGen_of_addCon, AddCon.le_iff, AddLocalization.r_of_eq, AddCon.ker_rel, AddCon.inf_iff_and, AddCon.quot_mk_eq_coe, AddCon.rel_mk, AddCon.le_def, AddCon.mem_addSubgroup_iff, AddLocalization.r_iff_exists, AddSubgroup.orderIsoAddCon_symm_apply_coe, AddLocalization.zero_rel, AddCon.coe_sInf, AddCon.ker_apply, AddSubmonoid.LocalizationMap.eq', AddLocalization.mk_eq_mk_iff, AddCon.rel_eq_coe, AddCon.sSup_def, AddMonoid.Coprod.mk_eq_mk, AddCon.comap_rel, AddCon.sup_eq_addConGen, AddCon.addConGen_mono, AddCon.addConGen_eq, AddSubgroup.orderIsoAddCon_apply, AddCon.orderIsoOp_apply, AddCon.toSetoid_injective, AddCon.ext_iff, AddLocalization.r_iff_oreEqv_r, AddCon.toSetoid_eq_bot, QuotientAddGroup.con_mono, AddCon.le_comap_conGen, AddCon.orderIsoOp_symm_apply, QuotientAddGroup.con_le_iff, AddCon.sInf_toSetoid, AddCon.toSetoid_eq_top, AddCon.mem_coe, AddCon.refl, AddCon.coe_inf, AddMonoid.Coprod.con_neg_add_cancel
Con πŸ“–CompData
56 mathmath: Localization.one_rel, RingCon.toCon_eq_bot, Con.liftOnUnits_mk, RingCon.rel_mk, Con.le_iff, Con.sup_eq_conGen, RingCon.toCon_injective, Con.ker_rel, Con.conGen_idem, Con.refl, Con.sInf_toSetoid, Con.ker_apply, QuotientGroup.con_le_iff, Con.coe_inf, Monoid.Coprod.con_inv_mul_cancel, Con.mem_subgroup_iff, Con.rel_mk, Con.mem_coe, Con.conGen_eq, Con.orderIsoOp_symm_apply, Localization.r_of_eq, Con.toSetoid_eq_bot, Subgroup.orderIsoCon_apply, Con.coe_iInf, Con.eq, Con.rel_eq_coe, Con.sSup_eq_conGen, Con.coe_inj, Con.sup_def, Localization.r_iff_exists, Con.conGen_mono, Con.toSetoid_bot, RingCon.coe_mk, Con.orderIsoOp_apply, Con.conGen_of_con, Con.le_def, Submonoid.LocalizationMap.eq', Con.toSetoid_injective, Subgroup.orderIsoCon_symm_apply_coe, QuotientGroup.con_mono, Con.le_comap_conGen, Con.inf_iff_and, Con.coe_sInf, Con.sSup_def, RingCon.toCon_eq_top, Con.toSetoid_top, Localization.r_iff_oreEqv_r, Con.toSetoid_eq_top, Con.quot_mk_eq_coe, RingCon.toCon_coe_eq_coe, Monoid.Coprod.mk_eq_mk, Con.comap_rel, RingCon.toCon_bot, RingCon.toCon_top, Con.ext_iff, Localization.mk_eq_mk_iff
addConGen πŸ“–CompOp
14 mathmath: AddCon.sSup_eq_addConGen, FreeAddMonoid.toPiTensorProduct, AddCon.sup_def, AddCon.addConGen_idem, AddCon.addConGen_of_addCon, AddCon.comap_conGen_equiv, AddCon.sSup_def, AddCon.sup_eq_addConGen, AddCon.addConGen_mono, AddCon.addConGen_eq, AddCon.addConGen_le, AddCon.comap_conGen_of_bijective, AddCon.le_comap_conGen, CharacterModule.homEquiv_apply_apply
conGen πŸ“–CompOp
13 mathmath: Con.sup_eq_conGen, Con.conGen_idem, Con.comap_conGen_of_bijective, Con.conGen_eq, Con.conGen_le, Monoid.CoprodI.of_apply, Con.sSup_eq_conGen, Con.sup_def, Con.conGen_mono, Con.conGen_of_con, Con.le_comap_conGen, Con.sSup_def, Con.comap_conGen_equiv

---

← Back to Index