Documentation Verification Report

Inversion

πŸ“ Source: Mathlib/GroupTheory/Coxeter/Inversion.lean

Statistics

MetricCount
DefinitionsIsLeftInversion, IsReflection, IsRightInversion, leftInvSeq, rightInvSeq
5
Theoremsnodup_leftInvSeq, nodup_rightInvSeq, conj, inv, isLeftInversion_mul_right_iff, isReflection_inv, isRightInversion_mul_left_iff, length_mul_left_ne, length_mul_right_ne, mul_self, not_isLeftInversion_mul_right_iff, not_isRightInversion_mul_left_iff, odd_length, pow_two, getD_leftInvSeq, getD_leftInvSeq_mul_self, getD_leftInvSeq_mul_wordProd, getD_rightInvSeq, getD_rightInvSeq_mul_self, getElem_leftInvSeq, getElem_leftInvSeq_alternatingWord, getElem_rightInvSeq, getElem_succ_leftInvSeq_alternatingWord, isLeftInversion_inv_iff, isLeftInversion_of_mem_leftInvSeq, isLeftInversion_simple_iff_isLeftDescent, isReflection_conj_iff, isReflection_of_mem_leftInvSeq, isReflection_of_mem_rightInvSeq, isReflection_simple, isRightInversion_inv_iff, isRightInversion_of_mem_rightInvSeq, isRightInversion_simple_iff_isRightDescent, leftInvSeq_concat, leftInvSeq_nil, leftInvSeq_reverse, leftInvSeq_singleton, leftInvSeq_take, length_leftInvSeq, length_rightInvSeq, prod_leftInvSeq, prod_rightInvSeq, rightInvSeq_concat, rightInvSeq_drop, rightInvSeq_nil, rightInvSeq_reverse, rightInvSeq_singleton, wordProd_mul_getD_rightInvSeq
48
Total53

CoxeterSystem

Definitions

NameCategoryTheorems
IsLeftInversion πŸ“–MathDef
6 mathmath: IsReflection.isLeftInversion_mul_right_iff, isLeftInversion_simple_iff_isLeftDescent, isLeftInversion_inv_iff, isLeftInversion_of_mem_leftInvSeq, IsReflection.not_isLeftInversion_mul_right_iff, isRightInversion_inv_iff
IsReflection πŸ“–MathDef
4 mathmath: isReflection_of_mem_rightInvSeq, isReflection_simple, isReflection_conj_iff, isReflection_of_mem_leftInvSeq
IsRightInversion πŸ“–MathDef
6 mathmath: isRightInversion_of_mem_rightInvSeq, isLeftInversion_inv_iff, IsReflection.not_isRightInversion_mul_left_iff, IsReflection.isRightInversion_mul_left_iff, isRightInversion_simple_iff_isRightDescent, isRightInversion_inv_iff
leftInvSeq πŸ“–CompOp
15 mathmath: getElem_leftInvSeq_alternatingWord, leftInvSeq_reverse, getD_leftInvSeq, prod_leftInvSeq, getElem_succ_leftInvSeq_alternatingWord, getD_leftInvSeq_mul_self, leftInvSeq_concat, rightInvSeq_reverse, leftInvSeq_nil, leftInvSeq_singleton, leftInvSeq_take, length_leftInvSeq, getD_leftInvSeq_mul_wordProd, IsReduced.nodup_leftInvSeq, getElem_leftInvSeq
rightInvSeq πŸ“–CompOp
13 mathmath: leftInvSeq_reverse, IsReduced.nodup_rightInvSeq, rightInvSeq_singleton, rightInvSeq_reverse, getD_rightInvSeq_mul_self, rightInvSeq_concat, rightInvSeq_nil, length_rightInvSeq, getElem_rightInvSeq, wordProd_mul_getD_rightInvSeq, prod_rightInvSeq, rightInvSeq_drop, getD_rightInvSeq

Theorems

NameKindAssumesProvesValidatesDepends On
getD_leftInvSeq πŸ“–mathematicalβ€”leftInvSeq
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
wordProd
simple
InvOneClass.toInv
β€”Nat.instCanonicallyOrderedAdd
wordProd_nil
mul_one
inv_one
length_leftInvSeq
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
one_mul
inv_simple
simple_mul_simple_self
List.getD_map
wordProd_cons
mul_inv_rev
getD_leftInvSeq_mul_self πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
leftInvSeq
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”getD_leftInvSeq
mul_assoc
em
inv_mul_cancel
one_mul
simple_mul_simple_self
mul_inv_cancel
mul_one
getD_leftInvSeq_mul_wordProd πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
leftInvSeq
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
wordProd
β€”getD_leftInvSeq
lt_or_ge
mul_assoc
wordProd_append
wordProd_singleton
inv_mul_cancel_left
simple_mul_simple_cancel_left
mul_one
mul_inv_cancel
one_mul
getD_rightInvSeq πŸ“–mathematicalβ€”rightInvSeq
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
wordProd
simple
β€”Nat.instCanonicallyOrderedAdd
wordProd_nil
inv_one
mul_one
length_rightInvSeq
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
zero_add
getD_rightInvSeq_mul_self πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
rightInvSeq
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”getD_rightInvSeq
mul_assoc
em
mul_inv_cancel
one_mul
simple_mul_simple_self
inv_mul_cancel
mul_one
getElem_leftInvSeq πŸ“–mathematicalβ€”leftInvSeq
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
wordProd
simple
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”List.getD_eq_getElem
getD_leftInvSeq
getElem_leftInvSeq_alternatingWord πŸ“–mathematicalβ€”leftInvSeq
alternatingWord
wordProd
β€”length_alternatingWord
getElem_leftInvSeq
wordProd_nil
one_mul
inv_one
mul_one
wordProd_singleton
getElem_alternatingWord
add_zero
Distrib.rightDistribClass
Nat.instAtLeastTwoHAddOfNat
getElem_succ_leftInvSeq_alternatingWord
inv_simple
alternatingWord_succ'
wordProd_cons
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
alternatingWord_succ
wordProd_concat
mul_assoc
getElem_rightInvSeq πŸ“–mathematicalβ€”rightInvSeq
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
wordProd
simple
InvOneClass.toOne
β€”List.getD_eq_getElem
getD_rightInvSeq
getElem_succ_leftInvSeq_alternatingWord πŸ“–mathematicalβ€”leftInvSeq
alternatingWord
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MonoidHom
MulAut
MulAut.instGroup
MonoidHom.instFunLike
MulAut.conj
simple
β€”length_alternatingWord
getElem_leftInvSeq
listTake_succ_alternatingWord
wordProd_cons
mul_assoc
mul_inv_rev
inv_simple
LeftCancelSemigroup.toIsLeftCancelMul
RightCancelSemigroup.toIsRightCancelMul
getElem_alternatingWord_swapIndices
isLeftInversion_inv_iff πŸ“–mathematicalβ€”IsLeftInversion
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
IsRightInversion
β€”inv_inv
isRightInversion_inv_iff
isLeftInversion_of_mem_leftInvSeq πŸ“–mathematicalIsReduced
leftInvSeq
IsLeftInversion
wordProd
β€”isReflection_of_mem_leftInvSeq
List.getD_eq_getElem
getD_leftInvSeq_mul_wordProd
length_wordProd_le
List.length_eraseIdx_add_one
length_leftInvSeq
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
isLeftInversion_simple_iff_isLeftDescent πŸ“–mathematicalβ€”IsLeftInversion
simple
IsLeftDescent
β€”isReflection_simple
isReflection_conj_iff πŸ“–mathematicalβ€”IsReflection
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”inv_mul_cancel
one_mul
inv_inv
inv_mul_cancel_right
IsReflection.conj
isReflection_of_mem_leftInvSeq πŸ“–mathematicalleftInvSeqIsReflectionβ€”isReflection_of_mem_rightInvSeq
isReflection_of_mem_rightInvSeq πŸ“–mathematicalrightInvSeqIsReflectionβ€”mul_one
neg_neg
zpow_one
isReflection_simple πŸ“–mathematicalβ€”IsReflection
simple
β€”one_mul
inv_one
mul_one
isRightInversion_inv_iff πŸ“–mathematicalβ€”IsRightInversion
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
IsLeftInversion
β€”length_inv
mul_inv_rev
inv_inv
IsReflection.inv
isRightInversion_of_mem_rightInvSeq πŸ“–mathematicalIsReduced
rightInvSeq
IsRightInversion
wordProd
β€”isReflection_of_mem_rightInvSeq
List.getD_eq_getElem
wordProd_mul_getD_rightInvSeq
length_wordProd_le
List.length_eraseIdx_add_one
length_rightInvSeq
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
isRightInversion_simple_iff_isRightDescent πŸ“–mathematicalβ€”IsRightInversion
simple
IsRightDescent
β€”isReflection_simple
leftInvSeq_concat πŸ“–mathematicalβ€”leftInvSeq
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
wordProd
simple
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”wordProd_reverse
inv_inv
leftInvSeq_nil πŸ“–mathematicalβ€”leftInvSeqβ€”β€”
leftInvSeq_reverse πŸ“–mathematicalβ€”leftInvSeq
rightInvSeq
β€”β€”
leftInvSeq_singleton πŸ“–mathematicalβ€”leftInvSeq
simple
β€”β€”
leftInvSeq_take πŸ“–mathematicalβ€”leftInvSeqβ€”rightInvSeq_drop
length_rightInvSeq
length_leftInvSeq πŸ“–mathematicalβ€”leftInvSeqβ€”length_rightInvSeq
length_rightInvSeq πŸ“–mathematicalβ€”rightInvSeqβ€”β€”
prod_leftInvSeq πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
leftInvSeq
InvOneClass.toInv
wordProd
β€”List.prod_reverse_noncomm
IsReflection.inv
isReflection_of_mem_rightInvSeq
wordProd_reverse
prod_rightInvSeq
prod_rightInvSeq πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
rightInvSeq
InvOneClass.toInv
wordProd
β€”wordProd_nil
inv_one
mul_inv_cancel_right
wordProd_cons
mul_inv_rev
inv_simple
rightInvSeq_concat πŸ“–mathematicalβ€”rightInvSeq
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MonoidHom
MulAut
MulAut.instGroup
MonoidHom.instFunLike
MulAut.conj
simple
β€”rightInvSeq_singleton
wordProd_append
wordProd_cons
wordProd_nil
mul_one
mul_inv_rev
inv_simple
rightInvSeq_drop πŸ“–mathematicalβ€”rightInvSeqβ€”rightInvSeq.eq_2
rightInvSeq_nil πŸ“–mathematicalβ€”rightInvSeqβ€”β€”
rightInvSeq_reverse πŸ“–mathematicalβ€”rightInvSeq
leftInvSeq
β€”β€”
rightInvSeq_singleton πŸ“–mathematicalβ€”rightInvSeq
simple
β€”wordProd_nil
inv_one
one_mul
mul_one
wordProd_mul_getD_rightInvSeq πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
wordProd
rightInvSeq
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”getD_rightInvSeq
lt_or_ge
wordProd_append
mul_assoc
wordProd_singleton
mul_inv_cancel_left
simple_mul_simple_cancel_left
mul_one
inv_mul_cancel

CoxeterSystem.IsReduced

Theorems

NameKindAssumesProvesValidatesDepends On
nodup_leftInvSeq πŸ“–mathematicalCoxeterSystem.IsReducedCoxeterSystem.leftInvSeqβ€”nodup_rightInvSeq
CoxeterSystem.isReduced_reverse_iff
nodup_rightInvSeq πŸ“–mathematicalCoxeterSystem.IsReducedCoxeterSystem.rightInvSeqβ€”List.nodup_iff_getElem?_ne_getElem?
CoxeterSystem.length_rightInvSeq
List.getD_eq_getElem
Option.some_injective
CoxeterSystem.getD_rightInvSeq_mul_self
mul_assoc
mul_one
CoxeterSystem.wordProd_mul_getD_rightInvSeq
CoxeterSystem.length_wordProd_le

CoxeterSystem.IsReflection

Theorems

NameKindAssumesProvesValidatesDepends On
conj πŸ“–mathematicalCoxeterSystem.IsReflectionMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”mul_zpow_neg_one
inv πŸ“–mathematicalCoxeterSystem.IsReflectionInvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”mul_assoc
mul_inv_rev
inv_inv
CoxeterSystem.inv_simple
isLeftInversion_mul_right_iff πŸ“–mathematicalCoxeterSystem.IsReflectionCoxeterSystem.IsLeftInversion
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”CoxeterSystem.isRightInversion_inv_iff
mul_inv_rev
inv
isRightInversion_mul_left_iff
isReflection_inv πŸ“–mathematicalCoxeterSystem.IsReflectionInvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”inv
isRightInversion_mul_left_iff πŸ“–mathematicalCoxeterSystem.IsReflectionCoxeterSystem.IsRightInversion
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”mul_assoc
mul_self
mul_one
le_of_lt
lt_of_le_of_ne'
length_mul_left_ne
length_mul_left_ne πŸ“–β€”CoxeterSystem.IsReflectionβ€”β€”map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
CoxeterSystem.lengthParity_simple
map_inv
mul_inv_cancel_comm
Multiplicative.isLeftCancelMul
AddLeftCancelSemigroup.toIsLeftCancelAdd
NeZero.one
ZMod.nontrivial
Nat.Prime.one_lt'
Nat.fact_prime_two
Mathlib.Tactic.Contrapose.contraposeβ‚„
CoxeterSystem.lengthParity_eq_ofAdd_length
length_mul_right_ne πŸ“–β€”CoxeterSystem.IsReflectionβ€”β€”map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
CoxeterSystem.lengthParity_simple
map_inv
mul_inv_cancel_comm
Multiplicative.isRightCancelMul
AddRightCancelSemigroup.toIsRightCancelAdd
NeZero.one
ZMod.nontrivial
Nat.Prime.one_lt'
Nat.fact_prime_two
Mathlib.Tactic.Contrapose.contraposeβ‚„
CoxeterSystem.lengthParity_eq_ofAdd_length
mul_self πŸ“–mathematicalCoxeterSystem.IsReflectionMulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”conj_mul
CoxeterSystem.simple_mul_simple_self
mul_one
mul_inv_cancel
not_isLeftInversion_mul_right_iff πŸ“–mathematicalCoxeterSystem.IsReflectionCoxeterSystem.IsLeftInversion
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Iff.not_left
isLeftInversion_mul_right_iff
not_isRightInversion_mul_left_iff πŸ“–mathematicalCoxeterSystem.IsReflectionCoxeterSystem.IsRightInversion
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Iff.not_left
isRightInversion_mul_left_iff
odd_length πŸ“–mathematicalCoxeterSystem.IsReflectionOdd
Nat.instSemiring
CoxeterSystem.length
β€”map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
CoxeterSystem.lengthParity_simple
map_inv
mul_inv_cancel_comm
CoxeterSystem.lengthParity_eq_ofAdd_length
EquivLike.toEmbeddingLike
pow_two πŸ“–mathematicalCoxeterSystem.IsReflectionMonoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”conj_pow
CoxeterSystem.simple_sq
mul_one
mul_inv_cancel

---

← Back to Index