Documentation Verification Report

Length

πŸ“ Source: Mathlib/GroupTheory/Coxeter/Length.lean

Statistics

MetricCount
DefinitionsIsLeftDescent, IsReduced, IsRightDescent, length, lengthParity
5
Theoremsdrop, reverse, take, exists_leftDescent_of_ne_one, exists_reduced_word, exists_reduced_word', exists_rightDescent_of_ne_one, isLeftDescent_iff, isLeftDescent_iff_not_isLeftDescent_mul, isLeftDescent_inv_iff, isReduced_reverse_iff, isRightDescent_iff, isRightDescent_iff_not_isRightDescent_mul, isRightDescent_inv_iff, lengthParity_comp_simple, lengthParity_eq_ofAdd_length, lengthParity_simple, length_eq_one_iff, length_eq_zero_iff, length_inv, length_mul_ge_length_sub_length, length_mul_ge_length_sub_length', length_mul_ge_max, length_mul_le, length_mul_mod_two, length_mul_simple, length_mul_simple_ne, length_one, length_simple, length_simple_mul, length_simple_mul_ne, length_wordProd_le, not_isLeftDescent_iff, not_isLeftDescent_one, not_isReduced_alternatingWord, not_isRightDescent_iff, not_isRightDescent_one
37
Total42

CoxeterSystem

Definitions

NameCategoryTheorems
IsLeftDescent πŸ“–MathDef
8 mathmath: not_isLeftDescent_one, not_isLeftDescent_iff, isLeftDescent_iff, isRightDescent_inv_iff, isLeftInversion_simple_iff_isLeftDescent, exists_leftDescent_of_ne_one, isLeftDescent_inv_iff, isLeftDescent_iff_not_isLeftDescent_mul
IsReduced πŸ“–MathDef
3 mathmath: not_isReduced_alternatingWord, exists_reduced_word', isReduced_reverse_iff
IsRightDescent πŸ“–MathDef
8 mathmath: exists_rightDescent_of_ne_one, isRightDescent_inv_iff, isRightDescent_iff_not_isRightDescent_mul, isRightInversion_simple_iff_isRightDescent, isRightDescent_iff, not_isRightDescent_one, isLeftDescent_inv_iff, not_isRightDescent_iff
length πŸ“–CompOp
20 mathmath: length_eq_one_iff, length_mul_le, length_mul_simple, length_mul_ge_length_sub_length', length_simple_mul, length_one, length_mul_ge_max, not_isLeftDescent_iff, length_wordProd_le, isLeftDescent_iff, exists_reduced_word, isRightDescent_iff, lengthParity_eq_ofAdd_length, not_isRightDescent_iff, length_simple, length_eq_zero_iff, IsReflection.odd_length, length_mul_mod_two, length_inv, length_mul_ge_length_sub_length
lengthParity πŸ“–CompOp
3 mathmath: lengthParity_comp_simple, lengthParity_simple, lengthParity_eq_ofAdd_length

Theorems

NameKindAssumesProvesValidatesDepends On
exists_leftDescent_of_ne_one πŸ“–mathematicalβ€”IsLeftDescentβ€”exists_reduced_word
wordProd_nil
IsLeftDescent.eq_1
wordProd_cons
simple_mul_simple_cancel_left
length_wordProd_le
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
exists_reduced_word πŸ“–mathematicalβ€”length
wordProd
β€”Nat.find_spec
exists_reduced_word' πŸ“–mathematicalβ€”IsReduced
wordProd
β€”exists_reduced_word
exists_rightDescent_of_ne_one πŸ“–mathematicalβ€”IsRightDescentβ€”exists_leftDescent_of_ne_one
isLeftDescent_iff πŸ“–mathematicalβ€”IsLeftDescent
length
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
simple
β€”length_simple_mul
isLeftDescent_iff_not_isLeftDescent_mul πŸ“–mathematicalβ€”IsLeftDescent
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
simple
β€”isLeftDescent_iff
not_isLeftDescent_iff
simple_mul_simple_cancel_left
isLeftDescent_inv_iff πŸ“–mathematicalβ€”IsLeftDescent
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
IsRightDescent
β€”length_inv
mul_inv_rev
inv_inv
inv_simple
isReduced_reverse_iff πŸ“–mathematicalβ€”IsReducedβ€”wordProd_reverse
length_inv
isRightDescent_iff πŸ“–mathematicalβ€”IsRightDescent
length
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
simple
β€”length_mul_simple
isRightDescent_iff_not_isRightDescent_mul πŸ“–mathematicalβ€”IsRightDescent
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
simple
β€”isRightDescent_iff
not_isRightDescent_iff
simple_mul_simple_cancel_right
isRightDescent_inv_iff πŸ“–mathematicalβ€”IsRightDescent
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
IsLeftDescent
β€”inv_inv
isLeftDescent_inv_iff
lengthParity_comp_simple πŸ“–mathematicalβ€”Multiplicative
ZMod
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
MonoidHom.instFunLike
lengthParity
simple
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
AddMonoidWithOne.toOne
β€”lengthParity_simple
lengthParity_eq_ofAdd_length πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
ZMod
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
MonoidHom.instFunLike
lengthParity
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
AddMonoidWithOne.toNatCast
length
β€”exists_reduced_word
wordProd.eq_1
map_list_prod
MonoidHom.instMonoidHomClass
lengthParity_comp_simple
List.prod_replicate
ofAdd_nsmul
nsmul_one
lengthParity_simple πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
Multiplicative
ZMod
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Multiplicative.mulOneClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
ZMod.commRing
MonoidHom.instFunLike
lengthParity
simple
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
AddMonoidWithOne.toOne
β€”lift_apply_simple
length_eq_one_iff πŸ“–mathematicalβ€”length
simple
β€”exists_reduced_word
wordProd_singleton
length_simple
length_eq_zero_iff πŸ“–mathematicalβ€”length
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”exists_reduced_word
wordProd_nil
length_one
length_inv πŸ“–mathematicalβ€”length
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”exists_reduced_word
length_wordProd_le
wordProd_reverse
inv_inv
length_mul_ge_length_sub_length πŸ“–mathematicalβ€”length
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Nat.instOrderedSub
mul_inv_cancel_right
length_inv
length_mul_le
length_mul_ge_length_sub_length' πŸ“–mathematicalβ€”length
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Nat.instOrderedSub
add_comm
inv_mul_cancel_left
length_inv
length_mul_le
length_mul_ge_max πŸ“–mathematicalβ€”length
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”max_le_iff
length_mul_ge_length_sub_length
length_mul_ge_length_sub_length'
length_mul_le πŸ“–mathematicalβ€”length
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”exists_reduced_word
length_wordProd_le
wordProd_append
length_mul_mod_two πŸ“–mathematicalβ€”length
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”ZMod.natCast_eq_natCast_iff'
Nat.cast_add
lengthParity_eq_ofAdd_length
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
length_mul_simple πŸ“–mathematicalβ€”length
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
simple
β€”length_mul_simple_ne
length_mul_ge_length_sub_length
length_simple
Nat.instOrderedSub
length_mul_le
length_mul_simple_ne πŸ“–β€”β€”β€”β€”length_mul_mod_two
length_simple
length_one πŸ“–mathematicalβ€”length
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”length_wordProd_le
length_simple πŸ“–mathematicalβ€”length
simple
β€”wordProd_singleton
zero_add
length_wordProd_le
lengthParity_eq_ofAdd_length
Nat.cast_zero
lengthParity_simple
length_simple_mul πŸ“–mathematicalβ€”length
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
simple
β€”length_mul_simple
length_inv
mul_inv_rev
inv_simple
length_simple_mul_ne πŸ“–β€”β€”β€”β€”mul_inv_rev
inv_simple
inv_inv
length_inv
length_mul_simple_ne
length_wordProd_le πŸ“–mathematicalβ€”length
wordProd
β€”Nat.find_min'
not_isLeftDescent_iff πŸ“–mathematicalβ€”IsLeftDescent
length
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
simple
β€”length_simple_mul
not_isLeftDescent_one πŸ“–mathematicalβ€”IsLeftDescent
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”mul_one
length_simple
length_one
Nat.instCanonicallyOrderedAdd
not_isReduced_alternatingWord πŸ“–mathematicalCoxeterMatrix.MIsReduced
alternatingWord
β€”le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Nat.cast_mul
Nat.cast_add
Nat.cast_one
prod_alternatingWord_eq_prod_alternatingWord_sub
length_wordProd_le
length_alternatingWord
Mathlib.Tactic.Contrapose.contraposeβ‚„
IsReduced.drop
alternatingWord_succ'
not_isRightDescent_iff πŸ“–mathematicalβ€”IsRightDescent
length
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
simple
β€”length_mul_simple
not_isRightDescent_one πŸ“–mathematicalβ€”IsRightDescent
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”one_mul
length_simple
length_one
Nat.instCanonicallyOrderedAdd

CoxeterSystem.IsReduced

Theorems

NameKindAssumesProvesValidatesDepends On
drop πŸ“–β€”CoxeterSystem.IsReducedβ€”β€”β€”
reverse πŸ“–β€”CoxeterSystem.IsReducedβ€”β€”CoxeterSystem.isReduced_reverse_iff
take πŸ“–β€”CoxeterSystem.IsReducedβ€”β€”β€”

---

← Back to Index