Documentation Verification Report

DoubleCoset

πŸ“ Source: Mathlib/GroupTheory/DoubleCoset.lean

Statistics

MetricCount
DefinitionsdoubleCoset, instInhabitedQuotientCoeSubgroup, mk, quotToDoubleCoset, setoid
5
Theoremsbot_rel_eq_leftRel, disjoint_out, doubleCoset_eq_image2, doubleCoset_eq_of_mem, doubleCoset_union_leftCoset, doubleCoset_union_rightCoset, eq, eq_of_not_disjoint, left_bot_eq_left_quot, mem_doubleCoset, mem_doubleCoset_of_not_disjoint, mem_doubleCoset_self, mk_eq_of_doubleCoset_eq, mk_out_eq_mul, out_eq', rel_bot_eq_right_group_rel, rel_iff, right_bot_eq_right_quot, union_quotToDoubleCoset
19
Total24

DoubleCoset

Definitions

NameCategoryTheorems
doubleCoset πŸ“–CompOp
6 mathmath: doubleCoset_union_rightCoset, doubleCoset_eq_image2, mem_doubleCoset_self, doubleCoset_union_leftCoset, mem_doubleCoset, disjoint_out
instInhabitedQuotientCoeSubgroup πŸ“–CompOpβ€”
mk πŸ“–CompOpβ€”
quotToDoubleCoset πŸ“–CompOp
1 mathmath: union_quotToDoubleCoset
setoid πŸ“–CompOp
6 mathmath: rel_bot_eq_right_group_rel, rel_iff, disjoint_out, bot_rel_eq_leftRel, out_eq', mk_out_eq_mul

Theorems

NameKindAssumesProvesValidatesDepends On
bot_rel_eq_leftRel πŸ“–mathematicalβ€”setoid
SetLike.coe
Subgroup
Subgroup.instSetLike
Bot.bot
Subgroup.instBot
QuotientGroup.leftRel
β€”rel_iff
QuotientGroup.leftRel_apply
one_mul
inv_mul_cancel_left
mul_inv_cancel_left
disjoint_out πŸ“–mathematicalβ€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
doubleCoset
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Quotient.out
setoid
SetLike.coe
Subgroup
Subgroup.instSetLike
β€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
Quotient.out_eq
mk_eq_of_doubleCoset_eq
eq_of_not_disjoint
doubleCoset_eq_image2 πŸ“–mathematicalβ€”doubleCoset
Set.image2
β€”Set.mul_singleton
Set.image2_image_left
doubleCoset_eq_of_mem πŸ“–β€”Set
Set.instMembership
doubleCoset
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
Subgroup
Subgroup.instSetLike
β€”β€”mem_doubleCoset
doubleCoset.eq_1
Set.singleton_mul_singleton
mul_assoc
Subgroup.singleton_mul_subgroup
Subgroup.subgroup_mul_singleton
doubleCoset_union_leftCoset πŸ“–mathematicalβ€”Set.iUnion
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Monoid.toMulAction
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
SetLike.coe
doubleCoset
β€”Set.ext
mul_inv_rev
mul_inv_cancel_right
mul_inv_cancel
one_mul
inv_mul_cancel_right
inv_mul_cancel
doubleCoset_union_rightCoset πŸ“–mathematicalβ€”Set.iUnion
Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulOpposite
Set
Set.smulSet
SemigroupAction.toSMul
Monoid.toSemigroup
MulOpposite.instMonoid
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulAction.toSemigroupAction
Monoid.toOppositeMulAction
MulOpposite.op
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
SetLike.coe
doubleCoset
β€”Set.ext
mul_inv_rev
inv_mul_cancel_right
mul_inv_cancel_right
eq πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
Subgroup.instSetLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”Quotient.eq''
rel_iff
eq_of_not_disjoint πŸ“–β€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
doubleCoset
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
Subgroup
Subgroup.instSetLike
β€”β€”mem_doubleCoset_of_not_disjoint
disjoint_comm
doubleCoset_eq_of_mem
left_bot_eq_left_quot πŸ“–mathematicalβ€”Quotient
SetLike.coe
Subgroup
Subgroup.instSetLike
Bot.bot
Subgroup.instBot
HasQuotient.Quotient
QuotientGroup.instHasQuotientSubgroup
β€”Setoid.ext
bot_rel_eq_leftRel
mem_doubleCoset πŸ“–mathematicalβ€”Set
Set.instMembership
doubleCoset
β€”doubleCoset_eq_image2
mem_doubleCoset_of_not_disjoint πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
doubleCoset
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
Subgroup
Subgroup.instSetLike
Set.instMembershipβ€”Set.not_disjoint_iff
Subgroup.mul_mem
Subgroup.inv_mem
mul_assoc
eq_inv_mul_iff_mul_eq
eq_mul_inv_iff_mul_eq
mem_doubleCoset_self πŸ“–mathematicalβ€”Set
Set.instMembership
doubleCoset
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
Subgroup
Subgroup.instSetLike
β€”mem_doubleCoset
Subgroup.one_mem
one_mul
mul_one
mk_eq_of_doubleCoset_eq πŸ“–β€”doubleCoset
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SetLike.coe
Subgroup
Subgroup.instSetLike
β€”β€”eq
mem_doubleCoset
mem_doubleCoset_self
mk_out_eq_mul πŸ“–mathematicalβ€”Subgroup
SetLike.instMembership
Subgroup.instSetLike
Quotient.out
setoid
SetLike.coe
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”eq
out_eq'
Subgroup.inv_mem
eq_mul_inv_of_mul_eq
eq_inv_mul_of_mul_eq
mul_assoc
out_eq' πŸ“–mathematicalβ€”Quotient.out
setoid
SetLike.coe
Subgroup
Subgroup.instSetLike
β€”Quotient.out_eq'
rel_bot_eq_right_group_rel πŸ“–mathematicalβ€”setoid
SetLike.coe
Subgroup
Subgroup.instSetLike
Bot.bot
Subgroup.instBot
QuotientGroup.rightRel
β€”rel_iff
QuotientGroup.rightRel_apply
mul_one
mul_inv_cancel_right
inv_mul_cancel_right
rel_iff πŸ“–mathematicalβ€”setoid
SetLike.coe
Subgroup
Subgroup.instSetLike
SetLike.instMembership
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”mem_doubleCoset_self
doubleCoset_eq_of_mem
mem_doubleCoset
right_bot_eq_right_quot πŸ“–mathematicalβ€”Quotient
SetLike.coe
Subgroup
Subgroup.instSetLike
Bot.bot
Subgroup.instBot
QuotientGroup.rightRel
β€”Setoid.ext
rel_bot_eq_right_group_rel
union_quotToDoubleCoset πŸ“–mathematicalβ€”Set.iUnion
Quotient
SetLike.coe
Subgroup
Subgroup.instSetLike
quotToDoubleCoset
Set.univ
β€”Set.ext
mk_out_eq_mul
Subgroup.inv_mem
inv_mul_cancel
one_mul
mul_inv_cancel_right

---

← Back to Index