Documentation Verification Report

EckmannHilton

📁 Source: Mathlib/GroupTheory/EckmannHilton.lean

Statistics

MetricCount
DefinitionsIsUnital, addCommGroup, addCommMonoid, commGroup, commMonoid
5
TheoremsIsUnital, toLawfulIdentity, isUnital, mul, mul_assoc, mul_comm, one
7
Total12

EckmannHilton

Definitions

NameCategoryTheorems
IsUnital 📖CompData
5 mathmath: HomotopyGroup.isUnital_auxGroup, CategoryTheory.SemiadditiveOfBinaryBiproducts.isUnital_leftAdd, AddZeroClass.IsUnital, MulOneClass.isUnital, CategoryTheory.SemiadditiveOfBinaryBiproducts.isUnital_rightAdd
addCommGroup 📖CompOp
addCommMonoid 📖CompOp
commGroup 📖CompOp
commMonoid 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
mul 📖IsUnitalone
IsUnital.toLawfulIdentity
mul_assoc 📖IsUnitalmul
IsUnital.toLawfulIdentity
mul_comm 📖IsUnitalmul
IsUnital.toLawfulIdentity
one 📖IsUnitalIsUnital.toLawfulIdentity

EckmannHilton.AddZeroClass

Theorems

NameKindAssumesProvesValidatesDepends On
IsUnital 📖mathematicalEckmannHilton.IsUnital
AddZero.toAdd
AddZeroClass.toAddZero
AddZero.toZero
AddZeroClass.zero_add
AddZeroClass.add_zero

EckmannHilton.IsUnital

Theorems

NameKindAssumesProvesValidatesDepends On
toLawfulIdentity 📖EckmannHilton.IsUnital

EckmannHilton.MulOneClass

Theorems

NameKindAssumesProvesValidatesDepends On
isUnital 📖mathematicalEckmannHilton.IsUnital
MulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
MulOneClass.one_mul
MulOneClass.mul_one

---

← Back to Index