Documentation Verification Report

Duality

πŸ“ Source: Mathlib/GroupTheory/FiniteAbelian/Duality.lean

Statistics

MetricCount
Definitions0
Theoremscard_monoidHom_of_hasEnoughRootsOfUnity, exists_apply_ne_one_of_hasEnoughRootsOfUnity, monoidHom_mulEquiv_of_hasEnoughRootsOfUnity, restrict_surjective
4
Total4

CommGroup

Theorems

NameKindAssumesProvesValidatesDepends On
card_monoidHom_of_hasEnoughRootsOfUnity πŸ“–mathematicalβ€”Nat.card
MonoidHom
Units
CommMonoid.toMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
Units.instMulOneClass
β€”Nat.card_congr
monoidHom_mulEquiv_of_hasEnoughRootsOfUnity
exists_apply_ne_one_of_hasEnoughRootsOfUnity πŸ“–β€”β€”β€”β€”Monoid.neZero_exponent_of_finite
HasEnoughRootsOfUnity.of_dvd
ZMod.exists_monoidHom_apply_ne_one
HasEnoughRootsOfUnity.exists_primitiveRoot
monoidHom_mulEquiv_of_hasEnoughRootsOfUnity πŸ“–mathematicalβ€”MulEquiv
MonoidHom
Units
CommMonoid.toMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
toGroup
Units.instMulOneClass
MonoidHom.mul
toCommMonoid
Units.instCommGroupUnits
MulOne.toMul
β€”equiv_prod_multiplicative_zmod_of_finite
NeZero.of_gt
Nat.instCanonicallyOrderedAdd
Nat.card_eq_fintype_card
Fintype.card_multiplicative
ZMod.card
Finite.of_fintype
HasEnoughRootsOfUnity.of_dvd
Monoid.neZero_exponent_of_finite
IsCyclic.monoidHom_equiv_self
instFiniteMultiplicative
isCyclic_multiplicative
ZMod.instIsAddCyclic

MonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
restrict_surjective πŸ“–mathematicalβ€”MonoidHom
Units
CommMonoid.toMonoid
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
CommGroup.toCommMonoid
Units.instCommGroupUnits
Subgroup
SetLike.instMembership
Subgroup.instSetLike
SubmonoidClass.toMulOneClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
DFunLike.coe
instCommMonoid
instFunLike
restrictHom
β€”Subgroup.instFiniteSubtypeMem
HasEnoughRootsOfUnity.of_dvd
Monoid.neZero_exponent_of_finite
Monoid.exponent_submonoid_dvd
Subgroup.normal_of_comm
Group.exponent_quotient_dvd
surjective_of_card_ker_le_div
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
le_of_eq
CommGroup.card_monoidHom_of_hasEnoughRootsOfUnity
Subgroup.card_eq_card_quotient_mul_card_subgroup
mul_div_cancel_rightβ‚€
Nat.instMulDivCancelClass
Fintype.card_ne_zero
One.instNonempty
Fintype.card_eq_nat_card
Subgroup.finite_quotient_of_finiteIndex
Subgroup.finiteIndex_of_finite
Nat.card_congr

---

← Back to Index